
Symbolic Math Toolbox™ 5
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Symbolic Math Toolbox™ User’s Guide

© COPYRIGHT 1993–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
August 1993 First printing
October 1994 Second printing
May 1997 Third printing Revised for Version 2
May 2000 Fourth printing Minor changes
June 2001 Fifth printing Minor changes
July 2002 Online only Revised for Version 2.1.3 (Release 13)
October 2002 Online only Revised for Version 3.0.1
December 2002 Sixth printing
June 2004 Seventh printing Revised for Version 3.1 (Release 14)
October 2004 Online only Revised for Version 3.1.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.1.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.1.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.1.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1.5 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.2.2 (Release 2007b)
March 2008 Online only Revised for Version 3.2.3 (Release 2008a)
October 2008 Online only Revised for Version 5.0 (Release 2008a+)
October 2008 Online only Revised for Version 5.1 (Release 2008b)
November 2008 Online only Revised for Version 4.9 (Release 2007b+)
March 2009 Online only Revised for Version 5.2 (Release 2009a)
September 2009 Online only Revised for Version 5.3 (Release 2009b)
March 2010 Online only Revised for Version 5.4 (Release 2010a)
September 2010 Online only Revised for Version 5.5 (Release 2010b)
April 2011 Online only Revised for Version 5.6 (Release 2011a)

Contents

Introduction

1
Product Overview . 1-2

Accessing Symbolic Math Toolbox Functionality 1-3
Key Features . 1-3
Working from MATLAB . 1-3
Working from MuPAD . 1-3

Getting Started

2
Symbolic Objects . 2-2
Overview of Symbolic Objects . 2-2
Symbolic Variables . 2-2
Symbolic Numbers . 2-3

Creating Symbolic Variables and Expressions 2-6
Creating Symbolic Variables . 2-6
Creating Symbolic Expressions . 2-7
Creating Symbolic Objects with Identical Names 2-8
Creating a Matrix of Symbolic Variables 2-9
Creating a Matrix of Symbolic Numbers 2-10
Finding Symbolic Variables in Expressions and
Matrices . 2-11

Performing Symbolic Computations 2-12
Simplifying Symbolic Expressions . 2-12
Substituting in Symbolic Expressions 2-14
Estimating the Precision of Numeric to Symbolic
Conversions . 2-17

Differentiating Symbolic Expressions 2-19
Integrating Symbolic Expressions . 2-21

v

Solving Equations . 2-23
Finding a Default Symbolic Variable 2-25
Creating Plots of Symbolic Functions 2-25

Assumptions for Symbolic Objects 2-31
Default Assumption . 2-31
Setting Assumptions for Symbolic Variables 2-31
Deleting Symbolic Objects and Their Assumptions 2-32

Using Symbolic Math Toolbox Software

3
Calculus . 3-2
Differentiation . 3-2
Limits . 3-8
Integration . 3-11
Symbolic Summation . 3-18
Taylor Series . 3-19
Calculus Example . 3-21

Simplifications and Substitutions 3-30
Simplifications . 3-30
Substitutions . 3-41

Variable-Precision Arithmetic . 3-48
Overview . 3-48
Example: Using the Different Kinds of Arithmetic 3-49
Another Example Using Different Kinds of Arithmetic . . . 3-52

Linear Algebra . 3-54
Basic Algebraic Operations . 3-54
Linear Algebraic Operations . 3-55
Eigenvalues . 3-60
Jordan Canonical Form . 3-65
Singular Value Decomposition . 3-67
Eigenvalue Trajectories . 3-70

Solving Equations . 3-81

vi Contents

Solving Algebraic Equations . 3-81
Several Algebraic Equations . 3-82
Single Differential Equation . 3-85
Several Differential Equations . 3-88

Integral Transforms and Z-Transforms 3-91
Fourier and Inverse Fourier Transforms 3-91
Laplace and Inverse Laplace Transforms 3-98
Z-Transforms and Inverse Z-Transforms 3-104

Special Functions of Applied Mathematics 3-108
Numerical Evaluation of Special Functions Using mfun . . 3-108
Syntax and Definitions of mfun Special Functions 3-109
Diffraction Example . 3-114

Using Graphics . 3-118
Creating Plots . 3-118
Exploring Function Plots . 3-129
Editing Graphs . 3-131
Saving Graphs . 3-132

Generating Code from Symbolic Expressions 3-134
Generating C or Fortran Code . 3-134
Generating MATLAB Functions . 3-135
Generating MATLAB Function Blocks 3-140
Generating Simscape Equations . 3-144

MuPAD in Symbolic Math Toolbox

4
Understanding MuPAD . 4-2
Introduction to MuPAD . 4-2
MuPAD Engines and MATLAB Workspace 4-2
Introductory Example Using a MuPAD Notebook from
MATLAB . 4-3

MuPAD for MATLAB Users . 4-10
Getting Help for MuPAD . 4-10

vii

Creating, Opening, and Saving MuPAD Notebooks 4-11
Calculating in a MuPAD Notebook 4-14
Other MuPAD Interfaces: Editor and Debugger 4-21
Notebook Files and Program Files . 4-26
Source Code of the MuPAD Library Functions 4-27

Integration of MuPAD and MATLAB 4-28
Differences Between MATLAB and MuPAD Syntax 4-28
Copying Variables and Expressions Between the MATLAB
Workspace and MuPAD Notebooks 4-32

Reserved Variable and Function Names 4-35
Opening MuPAD Interfaces from MATLAB 4-39
Calling Built-In MuPAD Functions from the MATLAB
Command Window . 4-40

Computing in the MATLAB Command Window vs. the
MuPAD Notebook Interface . 4-43

Using Your Own MuPAD Procedures 4-48
Clearing Assumptions and Resetting the Symbolic
Engine . 4-51

Integrating Symbolic Computations in Other Toolboxes
and Simulink . 4-56
Creating MATLAB Functions fromMuPAD Expressions . . 4-56
Creating MATLAB Function Blocks from MuPAD
Expressions . 4-59

Creating Simscape Equations fromMuPADExpressions . . 4-61

Function Reference

5
Calculus . 5-2

Linear Algebra . 5-2

Simplification . 5-3

Solution of Equations . 5-3

viii Contents

Variable-Precision Arithmetic . 5-4

Arithmetic Operations . 5-4

Special Functions . 5-5

MuPAD . 5-5

Pedagogical and Graphical Applications 5-6

Conversions . 5-7

Basic Operations . 5-8

Integral and Z-Transforms . 5-9

Functions — Alphabetical List

6

Index

ix

x Contents

1

Introduction

• “Product Overview” on page 1-2

• “Accessing Symbolic Math Toolbox Functionality” on page 1-3

1 Introduction

Product Overview
Symbolic Math Toolbox™ software lets you to perform symbolic computations
within the MATLAB® numeric environment. It provides tools for solving and
manipulating symbolic math expressions and performing variable-precision
arithmetic. The toolbox contains hundreds of symbolic functions that leverage
the MuPAD® engine for a broad range of mathematical tasks such as:

• Differentiation

• Integration

• Linear algebraic operations

• Simplification

• Transforms

• Variable-precision arithmetic

• Equation solving

Symbolic Math Toolbox software also includes the MuPAD language, which
is optimized for handling and operating on symbolic math expressions. In
addition to covering common mathematical tasks, the libraries of MuPAD
functions cover specialized areas such as number theory and combinatorics.
You can extend the built-in functionality by writing custom symbolic functions
and libraries in the MuPAD language.

1-2

Accessing Symbolic Math Toolbox™ Functionality

Accessing Symbolic Math Toolbox Functionality

In this section...

“Key Features” on page 1-3

“Working from MATLAB” on page 1-3

“Working from MuPAD” on page 1-3

Key Features
Symbolic Math Toolbox software provides a complete set of tools for symbolic
computing that augments the numeric capabilities of MATLAB. The toolbox
includes extensive symbolic functionality that you can access directly from
the MATLAB command line or from the MuPAD Notebook Interface. You can
extend the functionality available in the toolbox by writing custom symbolic
functions or libraries in the MuPAD language.

Working from MATLAB
You can access the Symbolic Math Toolbox functionality directly from the
MATLAB Command Window. This environment lets you call functions using
familiar MATLAB syntax.

The MATLAB Help browser presents the documentation that covers working
from the MATLAB Command Window. To access the MATLAB Help browser:

• Select Help > Product Help, and then select Symbolic Math Toolbox
in the left pane.

• Enter doc at the MATLAB command line.

If you are a new user, begin with Chapter 2, “Getting Started”.

Working from MuPAD
Also you can access the Symbolic Math Toolbox functionality from the MuPAD
Notebook Interface using the MuPAD language. The MuPAD Notebook
Interface includes a symbol palette for accessing common MuPAD functions.
All results are displayed in typeset math. You also can convert the results

1-3

1 Introduction

into MathML and TeX. You can embed graphics, animations, and descriptive
text within your notebook.

An editor, debugger, and other programming utilities provide tools for
authoring custom symbolic functions and libraries in the MuPAD language.
The MuPAD language supports multiple programming styles including
imperative, functional, and object-oriented programming. The language
treats variables as symbolic by default and is optimized for handling and
operating on symbolic math expressions. You can call functions written
in the MuPAD language from the MATLAB Command Window. For more
information, see “Calling Built-In MuPAD Functions from the MATLAB
Command Window” on page 4-40

The MuPAD Help browser presents documentation covering the MuPAD
Notebook Interface. To access the MuPAD Help browser:

• From the MuPAD Notebook Interface, select Help > Open Help.

• From the MATLAB Command Window, enter doc(symengine).

If you are a new user of the MuPAD Notebook Interface, read the Getting
Started chapter of the MuPAD documentation.

There is also a MuPAD Tutorial PDF file available at
http://www.mathworks.com/help/toolbox/mupad/pdflinks/tutorium.pdf.

1-4

http://www.mathworks.com/help/toolbox/mupad/pdflinks/tutorium.pdf

2

Getting Started

• “Symbolic Objects” on page 2-2

• “Creating Symbolic Variables and Expressions” on page 2-6

• “Performing Symbolic Computations” on page 2-12

• “Assumptions for Symbolic Objects” on page 2-31

2 Getting Started

Symbolic Objects

In this section...

“Overview of Symbolic Objects” on page 2-2

“Symbolic Variables” on page 2-2

“Symbolic Numbers” on page 2-3

Overview of Symbolic Objects
Symbolic objects are a special MATLAB data type introduced by the Symbolic
Math Toolbox software. They allow you to perform mathematical operations
in the MATLAB workspace analytically, without calculating numeric
values. You can use symbolic objects to perform a wide variety of analytical
computations:

• Differentiation, including partial differentiation

• Definite and indefinite integration

• Taking limits, including one-sided limits

• Summation, including Taylor series

• Matrix operations

• Solving algebraic and differential equations

• Variable-precision arithmetic

• Integral transforms

Symbolic objects present symbolic variables, symbolic numbers, symbolic
expressions, and symbolic matrices.

Symbolic Variables
To declare variables x and y as symbolic objects use the syms command:

syms x y

You can manipulate the symbolic objects according to the usual rules of
mathematics. For example:

2-2

Symbolic Objects

x + x + y

ans =
2*x + y

You also can create formal symbolic mathematical expressions and symbolic
matrices. See “Creating Symbolic Variables and Expressions” on page 2-6
for more information.

Symbolic Numbers
Symbolic Math Toolbox software also enables you to convert numbers to
symbolic objects. To create a symbolic number, use the sym command:

a = sym('2')

If you create a symbolic number with 10 or fewer decimal digits, you can
skip the quotes:

a = sym(2)

The following example illustrates the difference between a standard
double-precision MATLAB data and the corresponding symbolic number.
The MATLAB command

sqrt(2)

returns a double-precision floating-point number:

ans =
1.4142

On the other hand, if you calculate a square root of a symbolic number 2:

a = sqrt(sym(2))

you get the precise symbolic result:

a =
2^(1/2)

2-3

2 Getting Started

Symbolic results are not indented. Standard MATLAB double-precision
results are indented. The difference in output form shows what type of data is
presented as a result.

To evaluate a symbolic number numerically, use the double command:

double(a)

ans =
1.4142

You also can create a rational fraction involving symbolic numbers:

sym(2)/sym(5)

ans =
2/5

or more efficiently:

sym(2/5)

ans =
2/5

MATLAB performs arithmetic on symbolic fractions differently than it does
on standard numeric fractions. By default, MATLAB stores all numeric
values as double-precision floating-point data. For example:

2/5 + 1/3

ans =
0.7333

If you add the same fractions as symbolic objects, MATLAB finds their
common denominator and combines them in the usual procedure for adding
rational numbers:

sym(2/5) + sym(1/3)

ans =
11/15

2-4

Symbolic Objects

To learn more about symbolic representation of rational and decimal fractions,
see “Estimating the Precision of Numeric to Symbolic Conversions” on page
2-17.

2-5

2 Getting Started

Creating Symbolic Variables and Expressions

In this section...

“Creating Symbolic Variables” on page 2-6

“Creating Symbolic Expressions” on page 2-7

“Creating Symbolic Objects with Identical Names” on page 2-8

“Creating a Matrix of Symbolic Variables” on page 2-9

“Creating a Matrix of Symbolic Numbers” on page 2-10

“Finding Symbolic Variables in Expressions and Matrices” on page 2-11

Creating Symbolic Variables
The sym command creates symbolic variables and expressions. For example,
the commands

x = sym('x');
a = sym('alpha');

create a symbolic variable x with the value x assigned to it in the MATLAB
workspace and a symbolic variable a with the value alpha assigned to it. An
alternate way to create a symbolic object is to use the syms command:

syms x;
a = sym('alpha');

You can use sym or syms to create symbolic variables. The syms command:

• Does not use parentheses and quotation marks: syms x

• Can create multiple objects with one call

• Serves best for creating individual single and multiple symbolic variables

The sym command:

• Requires parentheses and quotation marks: x = sym('x'). When creating
a symbolic number with 10 or fewer decimal digits, you can skip the
quotation marks: f = sym(5).

2-6

Creating Symbolic Variables and Expressions

• Creates one symbolic object with each call.

• Serves best for creating symbolic numbers and symbolic expressions.

• Serves best for creating symbolic objects in functions and scripts.

Note In Symbolic Math Toolbox, pi is a reserved word.

Creating Symbolic Expressions
Suppose you want to use a symbolic variable to represent the golden ratio

 = +1 5
2

The command

phi = sym('(1 + sqrt(5))/2');

achieves this goal. Now you can perform various mathematical operations
on phi. For example,

f = phi^2 - phi - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax2 + bx + c. One
approach is to enter the command

f = sym('a*x^2 + b*x + c');

which assigns the symbolic expression ax2 + bx + c to the variable f. However,
in this case, Symbolic Math Toolbox software does not create variables
corresponding to the terms of the expression: a, b, c, and x. To perform
symbolic math operations on f, you need to create the variables explicitly. A
better alternative is to enter the commands

a = sym('a');

2-7

2 Getting Started

b = sym('b');
c = sym('c');
x = sym('x');

or simply

syms a b c x

Then, enter

f = a*x^2 + b*x + c;

Tip To create a symbolic expression that is a constant, you must use the sym
command. Do not use syms command to create a symbolic expression that is a
constant. For example, to create the expression whose value is 5, enter f =
sym(5). The command f = 5 does not define f as a symbolic expression.

Creating Symbolic Objects with Identical Names
If you set a variable equal to a symbolic expression, and then apply the syms
command to the variable, MATLAB software removes the previously defined
expression from the variable. For example,

syms a b;
f = a + b

returns

f =
a + b

If later you enter

syms f;
f

then MATLAB removes the value a + b from the expression f:

f =
f

2-8

Creating Symbolic Variables and Expressions

You can use the syms command to clear variables of definitions that you
previously assigned to them in your MATLAB session. However, syms does
not clear the following assumptions of the variables: complex, real, and
positive. These assumptions are stored separately from the symbolic object.
See “Deleting Symbolic Objects and Their Assumptions” on page 2-32 for
more information.

Creating a Matrix of Symbolic Variables

Using Existing Symbolic Objects as Elements
A circulant matrix has the property that each row is obtained from the
previous one by cyclically permuting the entries one step forward. For
example, create the symbolic circulant matrix whose elements are a, b, and c,
using the commands:

syms a b c;
A = [a b c; c a b; b c a]

A =
[a, b, c]
[c, a, b]
[b, c, a]

Since matrix A is circulant, the sum of elements over each row and each
column is the same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =
a + b + c

Check if the sum of the elements of the first row equals the sum of the
elements of the second column:

sum(A(1,:)) == sum(A(:,2))

The sums are equal:

ans =
1

2-9

2 Getting Started

From this example, you can see that using symbolic objects is very similar to
using regular MATLAB numeric objects.

Generating Elements While Creating a Matrix
The sym function also lets you define a symbolic matrix or vector without
having to define its elements in advance. In this case, the sym function
generates the elements of a symbolic matrix at the same time when it creates
a matrix. The function presents all generated elements using the same form:
the base (which must be a valid variable name), a row index, and a column
index. Use the first argument of sym to specify the base for the names of
generated elements. You can use any valid variable name as a base. To check
whether the name is a valid variable name, use the isvarname function. By
default, sym separates a row index and a column index by underscore. For
example, create the 2-by-4 matrix A with the elements A1_1, ..., A2_4:

A = sym('A', [2 4])

A =
[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]

To control the format of the generated names of matrix elements, use %d
in the first argument:

A = sym('A%d%d', [2 4])

A =
[A11, A12, A13, A14]
[A21, A22, A23, A24]

Creating a Matrix of Symbolic Numbers
A particularly effective use of sym is to convert a matrix from numeric to
symbolic form. The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =
1.0000 0.5000 0.3333

2-10

Creating Symbolic Variables and Expressions

0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)

you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions, see “Estimating
the Precision of Numeric to Symbolic Conversions” on page 2-17.

Finding Symbolic Variables in Expressions and
Matrices
To determine what symbolic variables are present in an expression, use
the symvar command. For example, given the symbolic expressions f and
g defined by

syms a b n t x z;
f = x^n;
g = sin(a*t + b);

you can find the symbolic variables in f by entering:

symvar(f)

ans =
[n, x]

Similarly, you can find the symbolic variables in g by entering:

symvar(g)

ans =
[a, b, t]

2-11

2 Getting Started

Performing Symbolic Computations

In this section...

“Simplifying Symbolic Expressions” on page 2-12

“Substituting in Symbolic Expressions” on page 2-14

“Estimating the Precision of Numeric to Symbolic Conversions” on page 2-17

“Differentiating Symbolic Expressions” on page 2-19

“Integrating Symbolic Expressions” on page 2-21

“Solving Equations” on page 2-23

“Finding a Default Symbolic Variable” on page 2-25

“Creating Plots of Symbolic Functions” on page 2-25

Simplifying Symbolic Expressions
Symbolic Math Toolbox provides a set of simplification functions allowing you
to manipulate an output of a symbolic expression. For example, the following
polynomial of the golden ratio phi

phi = sym('(1 + sqrt(5))/2');
f = phi^2 - phi - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

You can simplify this answer by entering

simplify(f)

and get a very short answer:

ans =
0

Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of

2-12

Performing Symbolic Computations

a symbolic expression cannot be defined clearly. Different problems require
different forms of the same mathematical expression. Knowing what form
is more effective for solving your particular problem, you can choose the
appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate
or integrate a polynomial, use the standard polynomial form with all the
parenthesis multiplied out and all the similar terms summed up. To rewrite a
polynomial in the standard form, use the expand function:

syms x;
f = (x ^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)

ans =
x^10 - 1

The factor simplification function shows the polynomial roots. If a
polynomial cannot be factored over the rational numbers, the output of the
factor function is the standard polynomial form. For example, to factor the
third-order polynomial, enter:

syms x;
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)

ans =
(x + 3)*(x + 2)*(x + 1)

The nested (Horner) representation of a polynomial is the most efficient for
numerical evaluations:

syms x;
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)

ans =
x*(x*(x*(x*(x + 1) + 1) + 1) + 1)

For a list of Symbolic Math Toolbox simplification functions, see
“Simplifications” on page 3-30.

2-13

2 Getting Started

Substituting in Symbolic Expressions

Substituting Symbolic Variables with Numbers
You can substitute a symbolic variable with a numeric value by using the subs
function. For example, evaluate the symbolic expression f at the point x = 2/3:

syms x;
f = 2*x^2 - 3*x + 1;
subs(f, 1/3)

ans =
0.2222

The subs function does not change the original expression f:

f

f =
2*x^2 - 3*x + 1

Substituting in Multivariate Expressions
When your expression contains more than one variable, you can specify
the variable for which you want to make the substitution. For example, to
substitute the value x = 3 in the symbolic expression

syms x y;
f = x^2*y + 5*x*sqrt(y);

enter the command

subs(f, x, 3)

ans =
9*y + 15*y^(1/2)

Substituting One Symbolic Variable for Another
You also can substitute one symbolic variable for another symbolic variable.
For example to replace the variable y with the variable x, enter

subs(f, y, x)

2-14

Performing Symbolic Computations

ans =
x^3 + 5*x^(3/2)

Substituting a Matrix into a Polynomial
You can also substitute a matrix into a symbolic polynomial with numeric
coefficients. There are two ways to substitute a matrix into a polynomial:
element by element and according to matrix multiplication rules.

Element-by-Element Substitution. To substitute a matrix at each element,
use the subs command:

A = [1 2 3;4 5 6];
syms x; f = x^3 - 15*x^2 - 24*x + 350;
subs(f,A)

ans =
312 250 170
78 -20 -118

You can do element-by-element substitution for rectangular or square
matrices.

Substitution in a Matrix Sense. If you want to substitute a matrix into
a polynomial using standard matrix multiplication rules, a matrix must be
square. For example, you can substitute the magic square A into a polynomial
f:

1 Create the polynomial:

syms x;
f = x^3 - 15*x^2 - 24*x + 350;

2 Create the magic square matrix:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

2-15

2 Getting Started

3 Get a row vector containing the numeric coefficients of the polynomial f:

b = sym2poly(f)

b =
1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A
replaces all occurrences of x in the polynomial. The constant times the
identity matrix eye(3) replaces the constant term of f:

A^3 - 15*A^2 - 24*A + 350*eye(3)

ans =
-10 0 0

0 -10 0
0 0 -10

The polyvalm command provides an easy way to obtain the same result:

polyvalm(sym2poly(f),A)

ans =
-10 0 0

0 -10 0
0 0 -10

Substituting the Elements of a Symbolic Matrix
To substitute a set of elements in a symbolic matrix, also use the subs
command. Suppose you want to replace some of the elements of a symbolic
circulant matrix A

syms a b c;
A = [a b c; c a b; b c a]

A =
[a, b, c]
[c, a, b]
[b, c, a]

2-16

Performing Symbolic Computations

To replace the (2, 1) element of A with beta and the variable b throughout
the matrix with variable alpha, enter

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)

The result is the matrix:

A =
[a, alpha, c]
[beta, a, alpha]
[alpha, c, a]

For more information on the subs command see “Substitutions” on page 3-41.

Estimating the Precision of Numeric to Symbolic
Conversions
The sym command converts a numeric scalar or matrix to symbolic form. By
default, the sym command returns a rational approximation of a numeric
expression. For example, you can convert the standard double-precision
variable into a symbolic object:

t = 0.1;
sym(t)

ans =
1/10

The technique for converting floating-point numbers is specified by the
optional second argument, which can be 'f', 'r', 'e' or 'd'. The default
option is 'r' that stands for rational approximation“Converting to Rational
Symbolic Form” on page 2-18.

Converting to Floating-Point Symbolic Form
The 'f' option to sym converts a double-precision floating-point number to a
sum of two binary numbers. All values are represented as rational numbers
N*2^e, where e and N are integers, and N is nonnegative. For example,

2-17

2 Getting Started

sym(t, 'f')

returns the symbolic floating-point representation:

ans =
3602879701896397/36028797018963968

Converting to Rational Symbolic Form
If you call sym command with the 'r' option

sym(t, 'r')

you get the results in the rational form:

ans =
1/10

This is the default setting for the sym command. If you call this command
without any option, you get the result in the same rational form:

sym(t)

ans =
1/10

Converting to Rational Symbolic Form with Machine Precision
If you call the sym command with the option 'e', it returns the rational form
of t plus the difference between the theoretical rational expression for t and
its actual (machine) floating-point value in terms of eps (the floating-point
relative precision):

sym(t, 'e')

ans =
eps/40 + 1/10

Converting to Decimal Symbolic Form
If you call the sym command with the option 'd', it returns the decimal
expansion of t up to the number of significant digits:

2-18

Performing Symbolic Computations

sym(t, 'd')

ans =
0.10000000000000000555111512312578

By default, the sym(t,'d') command returns a number with 32 significant
digits. To change the number of significant digits, use the digits command:

digits(7);
sym(t, 'd')

ans =
0.1

Differentiating Symbolic Expressions
With the Symbolic Math Toolbox software, you can find

• Derivatives of single-variable expressions

• Partial derivatives

• Second and higher order derivatives

• Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation”
on page 3-2.

Expressions with One Variable
To differentiate a symbolic expression, use the diff command. The following
example illustrates how to take a first derivative of a symbolic expression:

syms x;
f = sin(x)^2;
diff(f)

ans =
2*cos(x)*sin(x)

2-19

2 Getting Started

Partial Derivatives
For multivariable expressions, you can specify the differentiation variable.
If you do not specify any variable, MATLAB chooses a default variable by
the proximity to the letter x:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable,
see “Finding a Default Symbolic Variable” on page 2-25.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives
To take a second derivative of the symbolic expression f with respect to a
variable y, enter:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2

You get the same result by taking derivative twice: diff(diff(f, y)). To
take mixed derivatives, use two differentiation commands. For example:

syms x y;
f = sin(x)^2 + cos(y)^2;
diff(diff(f, y), x)

2-20

Performing Symbolic Computations

ans =
0

Integrating Symbolic Expressions
You can perform symbolic integration including:

• Indefinite and definite integration

• Integration of multivariable expressions

For in-depth information on the int command including integration with real
and complex parameters, see “Integration” on page 3-11.

Indefinite Integrals of One-Variable Expressions
Suppose you want to integrate a symbolic expression. The first step is to
create the symbolic expression:

syms x;
f = sin(x)^2;

To find the indefinite integral, enter

int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions
If the expression depends on multiple symbolic variables, you can designate a
variable of integration. If you do not specify any variable, MATLAB chooses a
default variable by the proximity to the letter x:

syms x y n;
f = x^n + y^n;
int(f)

ans =
x*y^n + (x*x^n)/(n + 1)

2-21

2 Getting Started

For the complete set of rules MATLAB applies for choosing a default variable,
see “Finding a Default Symbolic Variable” on page 2-25.

You also can integrate the expression f = x^n + y^n with respect to y

syms x y n;
f = x^n + y^n;
int(f, y)

ans =
x^n*y + (y*y^n)/(n + 1)

If the integration variable is n, enter

syms x y n;
f = x^n + y^n;
int(f, n)

ans =
x^n/log(x) + y^n/log(y)

Definite Integrals
To find a definite integral, pass the limits of integration as the final two
arguments of the int function:

syms x y n;
f = x^n + y^n;
int(f, 1, 10)

ans =
piecewise([n = -1, log(10) + 9/y],...
[n <> -1, (10*10^n - 1)/(n + 1) + 9*y^n])

If MATLAB Cannot Find a Closed Form of an Integral
If the int function cannot compute an integral, MATLAB issues a warning
and returns an unresolved integral:

syms x y n;
f = sin(x)^(1/sqrt(n));

2-22

Performing Symbolic Computations

int(f, n, 1, 10)

Warning: Explicit integral could not be found.

ans =
int(sin(x)^(1/n^(1/2)), n = 1..10)

Solving Equations
You can solve different types of symbolic equations including:

• Algebraic equations with one symbolic variable

• Algebraic equations with several symbolic variables

• Systems of algebraic equations

For in-depth information on solving symbolic equations including differential
equations, see “Solving Equations” on page 3-81.

Algebraic Equations with One Symbolic Variable
You can find the values of variable x for which the following expression
is equal to zero:

syms x;
solve(x^3 - 6*x^2 + 11*x - 6)

ans =
1
2
3

By default, the solve command assumes that the right-side of the equation is
equal to zero. If you want to solve an equation with a nonzero right part, use
quotation marks around the equation:

syms x;
solve('x^3 - 6*x^2 + 11*x - 5 = 1')

2-23

2 Getting Started

ans =
1
2
3

Algebraic Equations with Several Symbolic Variables
If an equation contains several symbolic variables, you can designate a
variable for which this equation should be solved. For example, you can solve
the multivariable equation:

syms x y;
f = 6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2;

with respect to a symbolic variable y:

solve(f, y)

ans =
1

2*x
-3*x

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB
applies for choosing a default variable see “Finding a Default Symbolic
Variable” on page 2-25.

Systems of Algebraic Equations
You also can solve systems of equations. For example:

syms x y z;
[x, y, z] = solve('z = 4*x', 'x = y', 'z = x^2 + y^2')

2-24

Performing Symbolic Computations

x =
0
2

y =
0
2

z =
0
8

Finding a Default Symbolic Variable
When performing substitution, differentiation, or integration, if you do not
specify a variable to use, MATLAB uses a default variable. The default
variable is basically the one closest alphabetically to x. To find which variable
is chosen as a default variable, use the symvar(expression, 1) command.
For example:

syms s t;
g = s + t;
symvar(g, 1)

ans =
t

syms sx tx;
g = sx + tx;
symvar(g, 1)

ans =
tx

For more information on choosing the default symbolic variable, see the
symvar command.

Creating Plots of Symbolic Functions
You can create different types of graphs including:

2-25

2 Getting Started

• Plots of explicit functions

• Plots of implicit functions

• 3-D parametric plots

• Surface plots

See “Pedagogical and Graphical Applications” on page 5-6 for in-depth
coverage of Symbolic Math Toolbox graphics and visualization tools.

2-26

Performing Symbolic Computations

Explicit Function Plot
The simplest way to create a plot is to use the ezplot command:

syms x;
ezplot(x^3 - 6*x^2 + 11*x - 6);
hold on;

The hold on command retains the existing plot allowing you to add new
elements and change the appearance of the plot. For example, now you can
change the names of the axes and add a new title and grid lines. When you
finish working with the current plot, enter the hold off command:

xlabel('x axis');
ylabel('no name axis');
title('Explicit function: x^3 - 6*x^2 + 11*x - 6');
grid on;
hold off

2-27

2 Getting Started

Implicit Function Plot
You can plot implicitly defined functions. For example, create a plot for the
following implicit function over the domain –1 < x < 1:

syms x y;
f = (x^2 + y^2)^4 - (x^2 - y^2)^2;
ezplot(f, [-1 1]);
hold on;
xlabel('x axis');
ylabel('y axis');
title('Implicit function: f = (x^2 + y^2)^4 - (x^2 - y^2)^2');
grid on;
hold off

2-28

Performing Symbolic Computations

3-D Plot
3-D graphics is also available in Symbolic Math Toolbox. To create a 3-D plot,
use the ezplot3 command. For example:

syms t;
ezplot3(t^2*sin(10*t), t^2*cos(10*t), t);

2-29

2 Getting Started

Surface Plot
If you want to create a surface plot, use the ezsurf command. For example, to
plot a paraboloid z = x2 + y2, enter:

syms x y;
ezsurf(x^2 + y^2);
hold on;
zlabel('z');
title('z = x^2 + y^2');
hold off

2-30

Assumptions for Symbolic Objects

Assumptions for Symbolic Objects

In this section...

“Default Assumption” on page 2-31

“Setting Assumptions for Symbolic Variables” on page 2-31

“Deleting Symbolic Objects and Their Assumptions” on page 2-32

Default Assumption
In Symbolic Math Toolbox, symbolic variables are single complex variables by
default. For example, if you declare z as a symbolic variable:

syms z

MATLAB assumes z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by entering conj command. If
conj(x) == x returns 1, x is a real variable:

z == conj(z)

ans =
0

Setting Assumptions for Symbolic Variables
The sym and syms commands allow you to set up assumptions for symbolic
variables. For example, create the real symbolic variables x and y, and the
positive symbolic variable z:

x = sym('x', 'real');
y = sym('y', 'real');
z = sym('z', 'positive');

or more efficiently

syms x y real;
syms z positive;

There are two assumptions you can assign to a symbolic object within the sym
command: real and positive. Together with the default complex property of a

2-31

2 Getting Started

symbolic variable, it gives you three choices for an assumption for a symbolic
variable: complex, real, and positive.

Deleting Symbolic Objects and Their Assumptions
When you declare x to be real with the command

syms x real

you create a symbolic object x and the assumption that the object is real.
Symbolic objects and their assumptions are stored separately. When you
delete a symbolic object from the MATLAB workspace by using

clear x

the assumption that x is real stays in the symbolic engine. If you declare a
new symbolic variable x later, it inherits the assumption that x is real instead
of getting a default assumption. If later you solve an equation and simplify
an expression with the symbolic variable x, you could get incomplete results.
For example, the assumption that x is real causes the polynomial x2+1 to
have no roots:

syms x real;
clear x;
syms x;
solve(x^2+1)

Warning: Explicit solution could not be found.
> In solve at 81

ans =
[empty sym]

The complex roots of this polynomial disappear because the symbolic variable
x still has the assumption that x is real stored in the symbolic engine. To
clear the assumption, enter

syms x clear

After you clear the assumption, the symbolic object stays in the MATLAB
workspace. If you want to remove both the symbolic object and its assumption,
use two subsequent commands:

2-32

Assumptions for Symbolic Objects

1 To clear the assumption, enter

syms x clear

2 To delete the symbolic object, enter

clear x

For more information on clearing symbolic variables, see “Clearing
Assumptions and Resetting the Symbolic Engine” on page 4-51.

2-33

2 Getting Started

2-34

3

Using Symbolic Math
Toolbox Software

• “Calculus” on page 3-2

• “Simplifications and Substitutions” on page 3-30

• “Variable-Precision Arithmetic” on page 3-48

• “Linear Algebra” on page 3-54

• “Solving Equations” on page 3-81

• “Integral Transforms and Z-Transforms” on page 3-91

• “Special Functions of Applied Mathematics” on page 3-108

• “Using Graphics” on page 3-118

• “Generating Code from Symbolic Expressions” on page 3-134

3 Using Symbolic Math Toolbox™ Software

Calculus

In this section...

“Differentiation” on page 3-2

“Limits” on page 3-8

“Integration” on page 3-11

“Symbolic Summation” on page 3-18

“Taylor Series” on page 3-19

“Calculus Example” on page 3-21

Differentiation
To illustrate how to take derivatives using Symbolic Math Toolbox software,
first create a symbolic expression:

syms x
f = sin(5*x)

The command

diff(f)

differentiates f with respect to x:

ans =
5*cos(5*x)

As another example, let

g = exp(x)*cos(x)

where exp(x) denotes ex, and differentiate g:

diff(g)
ans =
exp(x)*cos(x) - exp(x)*sin(x)

To take the second derivative of g, enter

3-2

Calculus

diff(g,2)
ans =
-2*exp(x)*sin(x)

You can get the same result by taking the derivative twice:

diff(diff(g))
ans =
-2*exp(x)*sin(x)

In this example, MATLAB software automatically simplifies the answer.
However, in some cases, MATLAB might not simply an answer, in which case
you can use the simplify command. For an example of such simplification,
see “More Examples” on page 3-5.

Note that to take the derivative of a constant, you must first define the
constant as a symbolic expression. For example, entering

c = sym('5');
diff(c)

returns

ans =
0

If you just enter

diff(5)

MATLAB returns

ans =
[]

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables
To differentiate an expression that contains more than one symbolic variable,
specify the variable that you want to differentiate with respect to. The diff

3-3

3 Using Symbolic Math Toolbox™ Software

command then calculates the partial derivative of the expression with respect
to that variable. For example, given the symbolic expression

syms s t
f = sin(s*t)

the command

diff(f,t)

calculates the partial derivative ∂ ∂f t/ . The result is

ans =
s*cos(s*t)

To differentiate f with respect to the variable s, enter

diff(f,s)

which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB
chooses a default variable. Basically, the default variable is the letter closest
to x in the alphabet. See the complete set of rules in “Finding a Default
Symbolic Variable” on page 2-25. In the preceding example, diff(f) takes
the derivative of f with respect to t because the letter t is closer to x in the
alphabet than the letter s is. To determine the default variable that MATLAB
differentiates with respect to, use the symvar command:

symvar(f, 1)

ans =
t

To calculate the second derivative of f with respect to t, enter

diff(f, t, 2)

which returns

3-4

Calculus

ans =
-s^2*sin(s*t)

Note that diff(f, 2) returns the same answer because t is the default
variable.

More Examples
To further illustrate the diff command, define a, b, x, n, t, and theta in
the MATLAB workspace by entering

syms a b x n t theta

This table illustrates the results of entering diff(f).

f diff(f)

syms x n;
f = x^n;

diff(f)

ans =
n*x^(n - 1)

syms a b t;
f = sin(a*t + b);

diff(f)

ans =
a*cos(b + a*t)

syms theta;
f = exp(i*theta);

diff(f)

ans =
exp(theta*i)*i

To differentiate the Bessel function of the first kind, besselj(nu,z), with
respect to z, type

syms nu z
b = besselj(nu,z);
db = diff(b)

3-5

3 Using Symbolic Math Toolbox™ Software

which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case,
the differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =
[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]

The command

diff(A)

returns

ans =
[-a*sin(a*x), a*cos(a*x)]
[-a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a
vector argument. Consider the transformation from Euclidean (x, y, z) to

spherical (, ,)r   coordinates as given by x r= cos cos  , y r= cos sin  , and
z r= sin . Note that  corresponds to elevation or latitude while  denotes
azimuth or longitude.

3-6

Calculus

To calculate the Jacobian matrix, J, of this transformation, use the jacobian
function. The mathematical notation for J is

J
x y z
r

= ∂
∂ ()

(, ,)
, ,

.
 

For the purposes of toolbox syntax, use l for  and f for  . The commands

syms r l f
x = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; z], [r l f])

return the Jacobian

J =
[cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]
[cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]
[sin(l), r*cos(l), 0]

and the command

detJ = simple(det(J))

returns

detJ =
-r^2*cos(l)

3-7

3 Using Symbolic Math Toolbox™ Software

The arguments of the jacobian function can be column or row vectors.
Moreover, since the determinant of the Jacobian is a rather complicated
trigonometric expression, you can use the simple command to make
trigonometric substitutions and reductions (simplifications). “Simplifications
and Substitutions” on page 3-30 discusses simplification in more detail.

A table summarizing diff and jacobian follows.

Mathematical
Operator MATLAB Command

df
dx

diff(f) or diff(f, x)

df
da

diff(f, a)

d f

db

2

2

diff(f, b, 2)

J
r t
u v

= ∂
∂

(,)
(,)

J = jacobian([r; t],[u; v])

Limits
The fundamental idea in calculus is to make calculations on functions as
a variable “gets close to” or approaches a certain value. Recall that the
definition of the derivative is given by a limit

f x
f x h f x

hh
’() lim

() ()
,= + −

→0

provided this limit exists. Symbolic Math Toolbox software enables you to
calculate the limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)

which return

3-8

Calculus

ans =
-sin(x)

and

limit((1 + x/n)^n, n, inf)

which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in
this case of cos(x)) and the exponential function.

One-Sided Limits
You can also calculate one-sided limits with Symbolic Math Toolbox software.
For example, you can calculate the limit of x/|x|, whose graph is shown in the
following figure, as x approaches 0 from the left or from the right.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

x/abs(x)

3-9

3 Using Symbolic Math Toolbox™ Software

To calculate the limit as x approaches 0 from the left,

lim ,
x

x
x→ −0

enter

syms x;
limit(x/abs(x), x, 0, 'left')

This returns

ans =
-1

To calculate the limit as x approaches 0 from the right,

lim ,
x

x
x→ +
=

0
1

enter

syms x;
limit(x/abs(x), x, 0, 'right')

This returns

ans =
1

Since the limit from the left does not equal the limit from the right, the two-
sided limit does not exist. In the case of undefined limits, MATLAB returns
NaN (not a number). For example,

syms x;
limit(x/abs(x), x, 0)

returns

ans =
NaN

3-10

Calculus

Observe that the default case, limit(f) is the same as limit(f,x,0).
Explore the options for the limit command in this table, where f is a function
of the symbolic object x.

Mathematical
Operation MATLAB Command

lim ()
x

f x
→0

limit(f)

lim ()
x a

f x
→

limit(f, x, a) or

limit(f, a)

lim ()
x a

f x
→ −

limit(f, x, a, 'left')

lim ()
x a

f x
→ +

limit(f, x, a, 'right')

Integration
If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That
is, int(f) returns the indefinite integral or antiderivative of f (provided one
exists in closed form). Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the
variable determined by symvar. See how int works by looking at this table.

3-11

3 Using Symbolic Math Toolbox™ Software

Mathematical Operation MATLAB Command

x dx
x n

x
n

n n∫ =
= −

+

⎧
⎨
⎪

⎩⎪
+

log() if

otherwise.

1

1

1

int(x^n) or int(x^n,x)

sin()
/

2 1
0

2

x dx =∫
 int(sin(2*x), 0, pi/2) or

int(sin(2*x), x, 0, pi/2)

g = cos(at + b)

g t dt at b a() sin() /= +∫
g = cos(a*t + b) int(g) or int(g, t)

J z dz J z1 0() ()= −∫ int(besselj(1, z)) or int(besselj(1,
z), z)

In contrast to differentiation, symbolic integration is a more complicated task.
A number of difficulties can arise in computing the integral:

• The antiderivative, F, may not exist in closed form.

• The antiderivative may define an unfamiliar function.

• The antiderivative may exist, but the software can’t find it.

• The software could find the antiderivative on a larger computer, but runs
out of time or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration
successfully. For example, create the symbolic variables

syms a b theta x y n u z

The following table illustrates integration of expressions containing those
variables.

3-12

Calculus

f int(f)

syms x n;
f = x^n;

int(f)

ans =
piecewise([n = -1, log(x)], [n <> -1,
x^(n + 1)/(n + 1)])

syms y;
f = y^(-1);

int(f)

ans =
log(y)

syms x n;
f = n^x;

int(f)

ans =
n^x/log(n)

syms a b
theta;
f =
sin(a*theta+b);

int(f)

ans =
-cos(b + a*theta)/a

syms u;
f = 1/(1+u^2);

int(f)

ans =
atan(u)

syms x;
f = exp(-x^2);

int(f)

ans =
(pi^(1/2)*erf(x))/2

In the last example, exp(-x^2), there is no formula for the integral involving
standard calculus expressions, such as trigonometric and exponential
functions. In this case, MATLAB returns an answer in terms of the error
function erf.

3-13

3 Using Symbolic Math Toolbox™ Software

If MATLAB is unable to find an answer to the integral of a function f, it
just returns int(f).

Definite integration is also possible.

Definite Integral Command

f x dx
a

b
()∫

int(f, a, b)

f v dv
a

b
()∫

int(f, v, a, b)

Here are some additional examples.

f a, b int(f, a, b)

syms x;
f = x^7;

a = 0;
b = 1;

int(f, a, b)

ans =
1/8

syms x;
f = 1/x;

a = 1;
b = 2;

int(f, a, b)

ans =
log(2)

syms x;
f =
log(x)*sqrt(x);

a = 0;
b = 1;

int(f, a, b)

ans =
-4/9

3-14

Calculus

f a, b int(f, a, b)

syms x;
f = exp(-x^2);

a = 0;
b = inf;

int(f, a, b)

ans =
pi^(1/2)/2

syms z;
f =
besselj(1,z)^2;

a = 0;
b = 1;

int(f, a, b)

ans =
hypergeom([3/2, 3/2], [2,
5/2, 3], -1)/12

For the Bessel function (besselj) example, it is possible to compute a
numerical approximation to the value of the integral, using the double
function. The commands

syms z
a = int(besselj(1,z)^2,0,1)

return

a =
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command

a = double(a)

returns

a =
0.0717

Integration with Real Parameters
One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

e ax− 2

3-15

3 Using Symbolic Math Toolbox™ Software

is the positive, bell shaped curve that tends to 0 as x tends to ±∞. You can
create an example of this curve, for a = 1/2, using the following commands:

syms x
a = sym(1/2);
f = exp(-a*x^2);
ezplot(f)

However, if you try to calculate the integral

e dxax−

−∞

∞

∫
2

without assigning a value to a, MATLAB assumes that a represents a complex
number, and therefore returns a piecewise answer that depends on the
argument of a. If you are only interested in the case when a is a positive real
number, you can calculate the integral as follows:

3-16

Calculus

syms a positive;

The argument positive in the syms command restricts a to have positive
values. Now you can calculate the preceding integral using the commands

syms x;
f = exp(-a*x^2);
int(f, x, -inf, inf)

This returns

ans =
pi^(1/2)/a^(1/2)

Integration with Complex Parameters
To calculate the integral

1
2 2a x

dx
+−∞

∞

∫

for complex values of a, enter

syms a x clear
f = 1/(a^2 + x^2);
F = int(f, x, -inf, inf)

syms is used with the clear option to clear the real property that was
assigned to a in the preceding example — see “Deleting Symbolic Objects
and Their Assumptions” on page 2-32.

The preceding commands produce the complex output

F =
(pi*signIm(i/a))/a

The function signIm is defined as:

3-17

3 Using Symbolic Math Toolbox™ Software

signIm
if or and
if

-1 otherwi
()

Im() , Im()
z

z z z
z=

> = <
=

1 0 0 0
0 0

sse.

⎧
⎨
⎪

⎩⎪

�������	�

�������	��

�������	��

�

�

�������	�

�������	��

To evaluate F at a = 1 + i, enter

g = subs(F, 1 + i)

g =
pi/(2*i)^(1/2)

double(g)

ans =
1.5708 - 1.5708i

Symbolic Summation
You can compute symbolic summations, when they exist, by using the symsum
command. For example, the p-series

1
1

2

1

32 2
+ + + ...

sums to  2 6/ , while the geometric series

1 + x + x2 + ...

3-18

Calculus

sums to 1/(1 – x), provided x < 1 . These summations are demonstrated below:

syms x k
s1 = symsum(1/k^2, 1, inf)
s2 = symsum(x^k, k, 0, inf)

s1 =
pi^2/6

s2 =
piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])

Taylor Series
The statements

syms x
f = 1/(5 + 4*cos(x));
T = taylor(f, 8)

return

T =
(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series
for f(x):

()
()
!

.
()

x a
f a

n
n

n

n

−
=

∞

∑
0

Technically, T is a Maclaurin series, since its base point is a = 0.

The command

pretty(T)

prints T in a format resembling typeset mathematics:

3-19

3 Using Symbolic Math Toolbox™ Software

6 4 2
49 x 5 x 2 x
------ + ---- + ---- + 1/9
131220 1458 81

These commands

syms x
g = exp(x*sin(x))
t = taylor(g, 12, 2);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t is a large expression; enter

size(char(t))

ans =
1 99791

to find that t has about 100,000 characters in its printed form. In order to
proceed with using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
1 12137

To simplify t even further, use the simple function:

t = simple(t);
size(char(t))

ans =
1 6988

Next, plot these functions together to see how well this Taylor approximation
compares to the actual function g:

3-20

Calculus

xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1, 3]); hold on;
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function');
legend('Taylor','Function')

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

2

3

4

5

6

x

Taylor approximation vs. actual function

Taylor
Function

Special thanks is given to Professor Gunnar Bäckstrøm of UMEA in Sweden
for this example.

Calculus Example
This section describes how to analyze a simple function to find its asymptotes,
maximum, minimum, and inflection point. The section covers the following
topics:

3-21

3 Using Symbolic Math Toolbox™ Software

• “Defining the Function” on page 3-22

• “Finding the Asymptotes” on page 3-23

• “Finding the Maximum and Minimum” on page 3-25

• “Finding the Inflection Point” on page 3-27

Defining the Function
The function in this example is

f x
x x

x x
() .= + −

+ −
3 6 1

3

2

2

To create the function, enter the following commands:

syms x
num = 3*x^2 + 6*x -1;
denom = x^2 + x - 3;
f = num/denom

This returns

f =
(3*x^2 + 6*x - 1)/(x^2 + x - 3)

You can plot the graph of f by entering

ezplot(f)

This displays the following plot.

3-22

Calculus

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

(3 x2+6 x−1)/(x2+x−3)

Finding the Asymptotes
To find the horizontal asymptote of the graph of f, take the limit of f as x
approaches positive infinity:

limit(f, inf)
ans =
3

The limit as x approaches negative infinity is also 3. This tells you that the
line y = 3 is a horizontal asymptote to the graph.

To find the vertical asymptotes of f, set the denominator equal to 0 and solve
by entering the following command:

roots = solve(denom)

This returns to solutions to x x2 3 0+ − = :

roots =

3-23

3 Using Symbolic Math Toolbox™ Software

13^(1/2)/2 - 1/2
- 13^(1/2)/2 - 1/2

This tells you that vertical asymptotes are the lines

x = − +1 13
2

,

and

x = − −1 13
2

.

You can plot the horizontal and vertical asymptotes with the following
commands:

ezplot(f)
hold on % Keep the graph of f in the figure
% Plot horizontal asymptote
plot([-2*pi 2*pi], [3 3],'g')
% Plot vertical asymptotes
plot(double(roots(1))*[1 1], [-5 10],'r')
plot(double(roots(2))*[1 1], [-5 10],'r')
title('Horizontal and Vertical Asymptotes')
hold off

Note that roots must be converted to double to use the plot command.

The preceding commands display the following figure.

3-24

Calculus

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

Horizontal and Vertical Asymptotes

To recover the graph of f without the asymptotes, enter

ezplot(f)

Finding the Maximum and Minimum
You can see from the graph that f has a local maximum somewhere between
the points x = –2 and x = 0, and might have a local minimum between x =
–6 and x = –2. To find the x-coordinates of the maximum and minimum,
first take the derivative of f:

f1 = diff(f)

This returns

f1 =

(6*x + 6)/(x^2 + x - 3) - ((2*x + 1)*(3*x^2 + 6*x - 1))/(x^2 + x - 3)^2

To simplify this expression, enter

f1 = simplify(f1)

3-25

3 Using Symbolic Math Toolbox™ Software

which returns

f1 =
-(3*x^2 + 16*x + 17)/(x^2 + x - 3)^2

You can display f1 in a more readable form by entering

pretty(f1)

which returns

2
3 x + 16 x + 17

- ----------------
2 2

(x + x - 3)

Next, set the derivative equal to 0 and solve for the critical points:

crit_pts = solve(f1)

This returns

crit_pts =

13^(1/2)/3 - 8/3
- 13^(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

x1
8 13

3
= − −

,

and a local maximum at

x2
8 13

3
= − +

.

3-26

Calculus

Note MATLAB does not always return the roots to an equation in the same
order.

You can plot the maximum and minimum of f with the following commands:

ezplot(f)
hold on
plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-5.5,3.2,'Local minimum')
text(-2.5,2,'Local maximum')
hold off

This displays the following figure.

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

Maximum and Minimum of f

Local minimum

Local maximum

Finding the Inflection Point
To find the inflection point of f, set the second derivative equal to 0 and solve.

3-27

3 Using Symbolic Math Toolbox™ Software

f2 = diff(f1);
inflec_pt = solve(f2);
double(inflec_pt)

This returns

ans =
-5.2635
-1.3682 - 0.8511i
-1.3682 + 0.8511i

In this example, only the first entry is a real number, so this is the only
inflection point. (Note that in other examples, the real solutions might not
be the first entries of the answer.) Since you are only interested in the real
solutions, you can discard the last two entries, which are complex numbers.

inflec_pt = inflec_pt(1)

To see the symbolic expression for the inflection point, enter

pretty(simplify(inflec_pt))

This returns

/ 1/2 \1/3
13 | 2197 |

- ------------------------- - | 169/54 - ------- | - 8/3
/ 1/2 \1/3 \ 18 /
| 2197 |

9 | 169/54 - ------- |
\ 18 /

To plot the inflection point, enter

ezplot(f, [-9 6])
hold on
plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')
text(-7,2,'Inflection point')

3-28

Calculus

hold off

The extra argument, [-9 6], in ezplot extends the range of x values in
the plot so that you see the inflection point more clearly, as shown in the
following figure.

−8 −6 −4 −2 0 2 4 6

−2

0

2

4

6

8

x

Inflection Point of f

Inflection point

3-29

3 Using Symbolic Math Toolbox™ Software

Simplifications and Substitutions

In this section...

“Simplifications” on page 3-30

“Substitutions” on page 3-41

Simplifications
Here are three different symbolic expressions.

syms x
f = x^3 - 6*x^2 + 11*x - 6;
g = (x - 1)*(x - 2)*(x - 3);
h = -6 + (11 + (-6 + x)*x)*x;

Here are their prettyprinted forms, generated by

pretty(f);
pretty(g);
pretty(h)

3 2
x - 6 x + 11 x - 6

(x - 1) (x - 2) (x - 3)

x (x (x - 6) + 11) - 6

These expressions are three different representations of the same
mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The
first form, f, is the most commonly used representation of a polynomial. It
is simply a linear combination of the powers of x. The second form, g, is the
factored form. It displays the roots of the polynomial and is the most accurate
for numerical evaluation near the roots. But, if a polynomial does not have
such simple roots, its factored form may not be so convenient. The third form,
h, is the Horner, or nested, representation. For numerical evaluation, it

3-30

Simplifications and Substitutions

involves the fewest arithmetic operations and is the most accurate for some
other ranges of x.

The symbolic simplification problem involves the verification that these three
expressions represent the same function. It also involves a less clearly defined
objective — which of these representations is “the simplest”?

This toolbox provides several functions that apply various algebraic and
trigonometric identities to transform one representation of a function into
another, possibly simpler, representation. These functions are collect,
expand, horner, factor, simplify, and simple.

collect
The statementcollect(f) views f as a polynomial in its symbolic variable,
say x, and collects all the coefficients with the same power of x. A second
argument can specify the variable in which to collect terms if there is more
than one candidate. Here are a few examples.

f collect(f)

syms x;
f =
(x-1)*(x-2)*(x-3);

collect(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x;
f = x*(x*(x - 6) +
11) - 6;

collect(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x t;
f = (1+x)*t + x*t;

collect(f)

ans =
(2*t)*x + t

3-31

3 Using Symbolic Math Toolbox™ Software

expand
The statement expand(f) distributes products over sums and applies other
identities involving functions of sums as shown in the examples below.

f expand(f)

syms a x y;
f = a*(x + y);

expand(f)

ans =
a*x + a*y

syms x;
f = (x - 1)*(x
- 2)*(x - 3);

expand(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x;
f = x*(x*(x -
6) + 11) - 6;

expand(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms a b;
f = exp(a + b);

expand(f)

ans =
exp(a)*exp(b)

syms x y;
f = cos(x + y);

expand(f)

ans =
cos(x)*cos(y) - sin(x)*sin(y)

3-32

Simplifications and Substitutions

f expand(f)

syms x;
f =
cos(3*acos(x));

expand(f)

ans =
4*x^3 - 3*x

syms x;
f = 3*x*(x^2 -
1) + x^3;

expand(f)

ans =
4*x^3 - 3*x

horner
The statement horner(f) transforms a symbolic polynomial f into its Horner,
or nested, representation as shown in the following examples.

f horner(f)

syms x;
f = x^3 - 6*x^2
+ 11*x - 6;

horner(f)

ans =
x*(x*(x - 6) + 11) - 6

syms x;
f = 1.1 + 2.2*x
+ 3.3*x^2;

horner(f)

ans =
x*((33*x)/10 + 11/5) + 11/10

factor
If f is a polynomial with rational coefficients, the statement

factor(f)

expresses f as a product of polynomials of lower degree with rational
coefficients. If f cannot be factored over the rational numbers, the result is
f itself. Here are several examples.

3-33

3 Using Symbolic Math Toolbox™ Software

f factor(f)

syms x;
f = x^3 - 6*x^2
+ 11*x - 6;

factor(f)

ans =
(x - 3)*(x - 1)*(x - 2)

syms x;
f = x^3 - 6*x^2
+ 11*x - 5;

factor(f)

ans =
x^3 - 6*x^2 + 11*x - 5

syms x;
f = x^6 + 1;

factor(f)

ans =
(x^2 + 1)*(x^4 - x^2 + 1)

Here is another example involving factor. It factors polynomials of the form
x^n + 1. This code

syms x;
n = (1:9)';
p = x.^n + 1;
f = factor(p);
[p, f]

returns a matrix with the polynomials in its first column and their factored
forms in its second.

ans =
[x + 1, x + 1]
[x^2 + 1, x^2 + 1]
[x^3 + 1, (x + 1)*(x^2 - x + 1)]
[x^4 + 1, x^4 + 1]
[x^5 + 1, (x + 1)*(x^4 - x^3 + x^2 - x + 1)]
[x^6 + 1, (x^2 + 1)*(x^4 - x^2 + 1)]
[x^7 + 1, (x + 1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)]
[x^8 + 1, x^8 + 1]
[x^9 + 1, (x + 1)*(x^2 - x + 1)*(x^6 - x^3 + 1)]

3-34

Simplifications and Substitutions

As an aside at this point, factor can also factor symbolic objects containing
integers. This is an alternative to using the factor function in the MATLAB
specfun folder. For example, the following code segment

N = sym(1);
for k = 2:11

N(k) = 10*N(k-1)+1;
end
[N' factor(N')]

displays the factors of symbolic integers consisting of 1s:

ans =
[1, 1]
[11, 11]
[111, 3*37]
[1111, 11*101]
[11111, 41*271]
[111111, 3*7*11*13*37]
[1111111, 239*4649]
[11111111, 11*73*101*137]
[111111111, 3^2*37*333667]
[1111111111, 11*41*271*9091]
[11111111111, 21649*513239]

simplify
The simplify function is a powerful, general purpose tool that applies a
number of algebraic identities involving sums, integral powers, square roots
and other fractional powers, as well as a number of functional identities
involving trig functions, exponential and log functions, Bessel functions,
hypergeometric functions, and the gamma function. Here are some examples.

3-35

3 Using Symbolic Math Toolbox™ Software

f simplify(f)

syms x;
f = x*(x*(x - 6) +
11) - 6;

simplify(f)

ans =
(x - 1)*(x - 2)*(x - 3)

syms x;
f = (1 - x^2)/(1 - x);

simplify(f)

ans =
x + 1

syms a;
f = (1/a^3 + 6/a^2 +
12/a + 8)^(1/3);

simplify(f)

ans =
((2*a + 1)^3/a^3)^(1/3)

syms x y;
f = exp(x) * exp(y);

simplify(f)

ans =
exp(x + y)

syms x;
f = besselj(2, x) +
besselj(0, x);

simplify(f)

ans =
(2*besselj(1, x))/x

syms x;
f = gamma(x + 1) -
x*gamma(x);

simplify(f)

ans =
0

syms x;
f = cos(x)^2 + sin(x)^2;

simplify(f)

ans =
1

3-36

Simplifications and Substitutions

You can also use the syntax simplify(f, n) where n is a positive integer
that controls how many steps simplify takes. The default, when you don’t
provide an argument n, is 100 steps. For example,

syms x;

z = (cos(3*acos(x))*sin(x)^2*(cos(x)^2 + sin(x)^2)^2)/cos(x)^2

z =
(cos(3*acos(x))*sin(x)^2*(cos(x)^2 + sin(x)^2)^2)/cos(x)^2

simplify(z)

ans =
3*x - (3*x)/cos(x)^2 + (4*x^3)/cos(x)^2 - 4*x^3

simplify(z, 150)

ans =
-(x*(4*x^2 - 3)*(cos(x)^2 - 1))/cos(x)^2

simple
The simple function has the unorthodox mathematical goal of finding a
simplification of an expression that has the fewest number of characters.
Of course, there is little mathematical justification for claiming that one
expression is “simpler” than another just because its ASCII representation is
shorter, but this often proves satisfactory in practice.

The simple function achieves its goal by independently applying simplify,
collect, factor, and other simplification functions to an expression and
keeping track of the lengths of the results. The simple function then returns
the shortest result.

The simple function has several forms, each returning different output. The
form simple(f) displays each trial simplification and the simplification
function that produced it in the MATLAB command window. The simple
function then returns the shortest result. For example, the command

syms x;
simple(cos(x)^2 + sin(x)^2)

3-37

3 Using Symbolic Math Toolbox™ Software

displays the following alternative simplifications in the MATLAB command
window along with the result:

simplify:

1

radsimp:

cos(x)^2 + sin(x)^2

simplify(100):

1

combine(sincos):

1

combine(sinhcosh):

cos(x)^2 + sin(x)^2

combine(ln):

cos(x)^2 + sin(x)^2

factor:

cos(x)^2 + sin(x)^2

expand:

cos(x)^2 + sin(x)^2

combine:

cos(x)^2 + sin(x)^2

rewrite(exp):

(1/(2*exp(x*i)) + exp(x*i)/2)^2 + (i/(2*exp(x*i)) - (exp(x*i)*i)/2)^2

rewrite(sincos):

cos(x)^2 + sin(x)^2

rewrite(sinhcosh):

cosh(x*i)^2 - sinh(x*i)^2

rewrite(tan):

3-38

Simplifications and Substitutions

(tan(x/2)^2 - 1)^2/(tan(x/2)^2 + 1)^2 + (4*tan(x/2)^2)/(tan(x/2)^2 + 1)^2

mwcos2sin:

1

collect(x):

cos(x)^2 + sin(x)^2

ans =

1

This form is useful when you want to check, for example, whether the shortest
form is indeed the simplest. If you are not interested in how simple achieves
its result, use the form f = simple(f). This form simply returns the shortest
expression found. For example, the statement

f = simple(cos(x)^2 + sin(x)^2)

returns

f =
1

If you want to know which simplification returned the shortest result, use the
multiple output form [f, how] = simple(f). This form returns the shortest
result in the first variable and the simplification method used to achieve the
result in the second variable. For example, the statement

[f, how] = simple(cos(x)^2 + sin(x)^2)

returns

f =
1

how =
simplify

The simple function sometimes improves on the result returned by simplify,
one of the simplifications that it tries. For example, when applied to the
examples given for simplify, simple returns a simpler (or at least shorter)
result as shown:

3-39

3 Using Symbolic Math Toolbox™ Software

f simplify(f) simple(f)

syms a positive;
f = (1/a^3 + 6/a^2 +
12/a + 8)^(1/3);

simplify(f)

ans =
(8*a^3 + 12*a^2 + 6*a
+ 1)^(1/3)/a

g = simple(f)

g =
1/a + 2

syms x;
f = cos(x) + i*sin(x);

simplify(f)

ans =
cos(x) + sin(x)*i

g = simple(f)

g =
exp(x*i)

In some cases, it is advantageous to apply simple twice to obtain the effect of
two different simplification functions. For example:

syms x;
z = exp((cos(x)^2 - sin(x)^2)/(sin(x)*cos(x)))

z =

exp((cos(x)^2 - sin(x)^2)/(cos(x)*sin(x)))

z1 = simple(z)

z1 =
exp(cot(x) - tan(x))

z2 = simple(simple(z))

z2 =
exp(2/tan(2*x))

The simple function is particularly effective on expressions involving
trigonometric functions:

3-40

Simplifications and Substitutions

f simple(f)

syms x;
f = cos(x)^2 +
sin(x)^2;

f = simple(f)

f =
1

syms x;
f = 2*cos(x)^2 -
sin(x)^2;

f = simple(f)

f =
2 - 3*sin(x)^2

syms x;
f = cos(x)^2 -
sin(x)^2;

f = simple(f)

f =
cos(2*x)

syms x;
f = cos(x) +
i*sin(x);

f = simple(f)

f =
exp(x*i)

syms x;
f = cos(3*acos(x));

f = simple(f)

f =
4*x^3 - 3*x

Substitutions
There are two functions for symbolic substitution: subexpr and subs.

subexpr
These commands

syms a x
s = solve(x^3 + a*x + 1)

3-41

3 Using Symbolic Math Toolbox™ Software

solve the equation x^3 + a*x + 1 = 0 for the variable x:

s =

((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3) - a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))

(3^(1/2)*(a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) +...

((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))*i)/2 +...

a/(6*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) -...

((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)/2

a/(6*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) -...

(3^(1/2)*(a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) +...

((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))*i)/2 -...

((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)/2

This long expression has many repeated pieces, or subexpressions. The
subexpr function allows you to save these common subexpressions as
well as the symbolic object rewritten in terms of the subexpressions. The
subexpressions are saved in a column vector called sigma.

Continuing with the example

r = subexpr(s)

returns

sigma =

(a^3/27 + 1/4)^(1/2) - 1/2

r =

sigma^(1/3) - a/(3*sigma^(1/3))

(3^(1/2)*(a/(3*sigma^(1/3)) + sigma^(1/3))*i)/2 + a/(6*sigma^(1/3)) - sigma^(1/3)/2

a/(6*sigma^(1/3)) - (3^(1/2)*(a/(3*sigma^(1/3)) + sigma^(1/3))*i)/2 - sigma^(1/3)/2

Notice that subexpr creates the variable sigma in the MATLAB workspace.
You can verify this by typing whos, or the command

sigma

which returns

3-42

Simplifications and Substitutions

sigma =
(a^3/27 + 1/4)^(1/2) - 1/2

subs
The following code finds the eigenvalues and eigenvectors of a circulant
matrix A:

syms a b c

A = [a b c; b c a; c a b];

[v,E] = eig(A)

v =

[(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (a - b)/(a - c),...

- (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (a - b)/(a - c),...

1]

[- (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (b - c)/(a - c),...

(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (b - c)/(a - c),...

1]

[1, 1, 1]

E =

[-(a^2-a*b-a*c+b^2-b*c+c^2)^(1/2), 0, 0]

[0, (a^2-a*b-a*c+b^2-b*c+c^2)^(1/2), 0]

[0, 0, a+b+c]

Note MATLAB might return the eigenvalues that appear on the diagonal of E
in a different order. In this case, the corresponding eigenvectors, which are
the columns of v, will also appear in a different order.

Suppose you want to replace the rather lengthy expression (a^2 - a*b -
a*c + b^2 - b*c + c^2)^(1/2) throughout v and E. First, use subexpr:

E = subexpr(E,'S')

which returns

S =

3-43

3 Using Symbolic Math Toolbox™ Software

(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)

E =
[-S, 0, 0]
[0, S, 0]
[0, 0, a + b + c]

Next, substitute the symbol S into v with

v = simplify(subs(v, S, 'S'))

v =
[(S - a + b)/(a - c), -(S + a - b)/(a - c), 1]
[-(S + b - c)/(a - c), (S - b + c)/(a - c), 1]
[1, 1, 1]

Now suppose you want to evaluate v at a = 10. Use the subs command:

subs(v, a, 10)

This replaces all occurrences of a in v with 10:

ans =
[-(S + b - 10)/(c - 10), (S - b + 10)/(c - 10), 1]
[(S + b - c)/(c - 10), -(S - b + c)/(c - 10), 1]
[1, 1, 1]

Notice, however, that the symbolic expression that S represents is unaffected
by this substitution. That is, the symbol a in S is not replaced by 10. The subs
command is also a useful function for substituting in a variety of values for
several variables in a particular expression. For example, suppose that in
addition to substituting a = 10 in S, you also want to substitute the values
for 2 and 10 for b and c, respectively. The way to do this is to set values for a,
b, and c in the workspace. Then subs evaluates its input using the existing
symbolic and double variables in the current workspace. In the example,
you first set

a = 10; b = 2; c = 10;
subs(S)

ans =
8

3-44

Simplifications and Substitutions

To look at the contents of the workspace, type:

whos

which gives

Name Size Bytes Class Attributes

A 3x3 622 sym
E 3x3 1144 sym
S 1x1 184 sym
a 1x1 8 double
ans 1x1 8 double
b 1x1 8 double
c 1x1 8 double
v 3x3 1144 sym

a, b, and c are now variables of class double while A, E, S, and v remain
symbolic expressions (class sym).

If you want to preserve a, b, and c as symbolic variables, but still alter their
value within S, use this procedure.

syms a b c
subs(S, {a, b, c}, {10, 2, 10})

ans =
8

Typing whos reveals that a, b, and c remain 1-by-1 sym objects.

The subs command can be combined with double to evaluate a symbolic
expression numerically. Suppose you have the following expressions

syms t
M = (1 - t^2)*exp(-1/2*t^2);
P = (1 - t^2)*sech(t);

and want to see how M and P differ graphically.

One approach is to type

3-45

3 Using Symbolic Math Toolbox™ Software

ezplot(M);
hold on;
ezplot(P);
hold off;

but this plot does not readily help you identify the curves.

−6 −4 −2 0 2 4 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

(1−t2) sech(t)

Instead, combine subs, double, and plot:

T = -6:0.05:6;
MT = double(subs(M, t, T));
PT = double(subs(P, t, T));
plot(T, MT, 'b', T, PT, 'r-.');
title(' ');
legend('M','P');
xlabel('t'); grid;

to produce a multicolored graph that indicates the difference between M and P.

3-46

Simplifications and Substitutions

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

M
P

Finally the use of subs with strings greatly facilitates the solution of problems
involving the Fourier, Laplace, or z-transforms. See “Integral Transforms and
Z-Transforms” on page 3-91 for details.

3-47

3 Using Symbolic Math Toolbox™ Software

Variable-Precision Arithmetic

In this section...

“Overview” on page 3-48

“Example: Using the Different Kinds of Arithmetic” on page 3-49

“Another Example Using Different Kinds of Arithmetic” on page 3-52

Overview
There are three different kinds of arithmetic operations in this toolbox.

Numeric MATLAB floating-point arithmetic

Rational MuPAD exact symbolic arithmetic

VPA MuPAD variable-precision arithmetic

For example, the MATLAB statements

format long
1/2 + 1/3

use numeric computation to produce

ans =
0.833333333333333

With Symbolic Math Toolbox software, the statement

sym(1/2) + 1/3

uses symbolic computation to yield

ans =
5/6

And, also with the toolbox, the statements

digits(25)
vpa('1/2 + 1/3')

3-48

Variable-Precision Arithmetic

use variable-precision arithmetic to return

ans =
0.8333333333333333333333333

The floating-point operations used by numeric arithmetic are the fastest of the
three, and require the least computer memory, but the results are not exact.
The number of digits in the printed output of MATLAB double quantities
is controlled by the format statement, but the internal representation is
always the eight-byte floating-point representation provided by the particular
computer hardware.

In the computation of the numeric result above, there are actually three
roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to
the result of the division, and one in the binary to decimal conversion for
the printed output. On computers that use IEEE® floating-point standard
arithmetic, the resulting internal value is the binary expansion of 5/6,
truncated to 53 bits. This is approximately 16 decimal digits. But, in this
particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the
most expensive of the three, in terms of both computer time and memory.
The results are exact, as long as enough time and memory are available to
complete the computations.

Variable-precision arithmetic falls in between the other two in terms of
both cost and accuracy. A global parameter, set by the function digits,
controls the number of significant decimal digits. Increasing the number of
digits increases the accuracy, but also increases both the time and memory
requirements. The default value of digits is 32, corresponding roughly to
floating-point accuracy.

Example: Using the Different Kinds of Arithmetic

Rational Arithmetic
By default, Symbolic Math Toolbox software uses rational arithmetic
operations, i.e., MuPAD software’s exact symbolic arithmetic. Rational
arithmetic is invoked when you create symbolic variables using the sym
function.

3-49

3 Using Symbolic Math Toolbox™ Software

The sym function converts a double matrix to its symbolic form. For example,
if the double matrix is

format short;
A = [1.1,1.2,1.3;2.1,2.2,2.3;3.1,3.2,3.3]

A =
1.1000 1.2000 1.3000
2.1000 2.2000 2.3000
3.1000 3.2000 3.3000

its symbolic form is:

S = sym(A)

S =
[11/10, 6/5, 13/10]
[21/10, 11/5, 23/10]
[31/10, 16/5, 33/10]

For this matrix A, it is possible to discover that the elements are the ratios of
small integers, so the symbolic representation is formed from those integers.
On the other hand, the statement

E = [exp(1) (1 + sqrt(5))/2; log(3) rand]

returns a matrix

E =
2.7183 1.6180
1.0986 0.6324

whose elements are not the ratios of small integers, so

sym(E)

reproduces the floating-point representation in a symbolic form:

ans =

[3060513257434037/1125899906842624, 910872158600853/562949953421312]

[2473854946935173/2251799813685248, 1423946432832521/2251799813685248]

3-50

Variable-Precision Arithmetic

Variable-Precision Numbers
Variable-precision numbers are distinguished from the exact rational
representation by the presence of a decimal point. A power of 10 scale factor,
denoted by 'e', is allowed. To use variable-precision instead of rational
arithmetic, create your variables using the vpa function.

For matrices with purely double entries, the vpa function generates the
representation that is used with variable-precision arithmetic. For example,
if you apply vpa to the matrix S defined in the preceding section, with
digits(4), by entering

digits(4);
vpa(S)

MATLAB returns the output

ans =
[1.1, 1.2, 1.3]
[2.1, 2.2, 2.3]
[3.1, 3.2, 3.3]

Applying vpa to the matrix E defined in the preceding section, with
digits(25), by entering

digits(25)
F = vpa(E)

returns

F =
[2.718281828459045534884808, 1.618033988749894902525739]
[1.098612288668109560063613, 0.6323592462254095103446616]

Restore the default digits setting:

digits(32);

Converting to Floating-Point
To convert a rational or variable-precision number to its MATLAB
floating-point representation, use the double function.

3-51

3 Using Symbolic Math Toolbox™ Software

In the example, both double(sym(E)) and double(vpa(E)) return E.

Another Example Using Different Kinds of Arithmetic
The next example is perhaps more interesting. Start with the symbolic
expression

f = sym('exp(pi*sqrt(163))');

The statement

format long;
double(f)

produces the printed floating-point value

ans =
2.625374126407687e+017

Using the second argument of vpa to specify the number of digits,

vpa(f,18)

returns

ans =
262537412640768744.0

and, too,

vpa(f,25)

returns

ans =
262537412640768744.0

You might suspect that f actually has an integer value. However, the 40-digit
value

vpa(f,40)

ans =

3-52

Variable-Precision Arithmetic

262537412640768743.9999999999992500725972

shows that f is very close to, but not exactly equal to, an integer.

3-53

3 Using Symbolic Math Toolbox™ Software

Linear Algebra

In this section...

“Basic Algebraic Operations” on page 3-54

“Linear Algebraic Operations” on page 3-55

“Eigenvalues” on page 3-60

“Jordan Canonical Form” on page 3-65

“Singular Value Decomposition” on page 3-67

“Eigenvalue Trajectories” on page 3-70

Basic Algebraic Operations
Basic algebraic operations on symbolic objects are the same as operations on
MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t.
The statements

syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through
twice the angle. The corresponding matrix can be computed by multiplying G
by itself or by raising G to the second power. Both

A = G*G

and

A = G^2

produce

3-54

Linear Algebra

A =
[cos(t)^2 - sin(t)^2, 2*cos(t)*sin(t)]
[-2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

The simple function

A = simple(A)

uses a trigonometric identity to return the expected form by trying
several different identities and picking the one that produces the shortest
representation.

A =
[cos(2*t), sin(2*t)]
[-sin(2*t), cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse.
Confirming this by

I = G.' *G

which produces

I =
[cos(t)^2 + sin(t)^2, 0]
[0, cos(t)^2 + sin(t)^2]

and then

I = simple(I)

I =
[1, 0]
[0, 1]

Linear Algebraic Operations
The following examples show how to do several basic linear algebraic
operations using Symbolic Math Toolbox software.

3-55

3 Using Symbolic Math Toolbox™ Software

The command

H = hilb(3)

generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of
small integers. Indeed, H is a MATLAB array of class double. Converting H
to a symbolic matrix

H = sym(H)

gives

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that
correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its
floating-point approximation, hilb(3). Therefore,

inv(H)

produces

ans =
[9, -36, 30]
[-36, 192, -180]
[30, -180, 180]

and

det(H)

yields

3-56

Linear Algebra

ans =
1/2160

You can use the backslash operator to solve a system of simultaneous linear
equations. For example, the commands

% Solve Hx = b
b = [1; 1; 1];
x = H\b

produce the solution

x =
3

-24
30

All three of these results, the inverse, the determinant, and the solution to
the linear system, are the exact results corresponding to the infinitely precise,
rational, Hilbert matrix. On the other hand, using digits(16), the command

digits(16);
V = vpa(hilb(3))

returns

V =
[1.0, 0.5, 0.3333333333333333]
[0.5, 0.3333333333333333, 0.25]
[0.3333333333333333, 0.25, 0.2]

The decimal points in the representation of the individual elements are the
signal to use variable-precision arithmetic. The result of each arithmetic
operation is rounded to 16 significant decimal digits. When inverting the
matrix, these errors are magnified by the matrix condition number, which for
hilb(3) is about 500. Consequently,

inv(V)

which returns

ans =

3-57

3 Using Symbolic Math Toolbox™ Software

[9.0, -36.0, 30.0]
[-36.0, 192.0, -180.0]
[30.0, -180.0, 180.0]

shows the loss of two digits. So does

1/det(V)

which gives

ans =
2160.000000000018

and

V\b

which is

ans =
3.0

-24.0
30.0

Since H is nonsingular, calculating the null space of H with the command

null(H)

returns an empty matrix:

ans =
[empty sym]

Calculating the column space of H with

colspace(H)

returns a permutation of the identity matrix:

ans =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

3-58

Linear Algebra

A more interesting example, which the following code shows, is to find a value
s for H(1,1) that makes H singular. The commands

syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)

produce

H =
[s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
s/240 - 1/270

sol =
8/9

Then

H = subs(H, s, sol)

substitutes the computed value of sol for s in H to give

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =
0

and

3-59

3 Using Symbolic Math Toolbox™ Software

inv(H)

produces the message

ans =
FAIL

because H is singular. For this matrix, null space and column space are
nontrivial:

Z = null(H)
C = colspace(H)

Z =
3/10
-6/5

1
C =
[1, 0]
[0, 1]
[-3/10, 6/5]

It should be pointed out that even though H is singular, vpa(H) is not. For any
integer value d, setting digits(d), and then computing inv(vpa(H)) results
in an inverse with elements on the order of 10^d.

Eigenvalues
The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues
and eigenvectors of A are computed, respectively, using the commands E =
eig(A) and [V,E] = eig(A).

The variable-precision counterparts are E = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A,
det(A-x*I), which is computed by poly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])

3-60

Linear Algebra

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and
the diagonal elements of E are the eigenvalues of H:

T =

[218/285 - (4*12589^(1/2))/285, (4*12589^(1/2))/285 + 218/285, 3/10]

[292/285 - 12589^(1/2)/285, 12589^(1/2)/285 + 292/285, -6/5]

[1, 1, 1]

E =

[32/45 - 12589^(1/2)/180, 0, 0]

[0, 12589^(1/2)/180 + 32/45, 0]

[0, 0, 0]

It may be easier to understand the structure of the matrices of eigenvectors,
T, and eigenvalues, E, if you convert T and E to decimal notation. To do so,
proceed as follows. The commands

Td = double(T)
Ed = double(E)

return

Td =
-0.8098 2.3397 0.3000
0.6309 1.4182 -1.2000
1.0000 1.0000 1.0000

Ed =
0.0878 0 0

0 1.3344 0
0 0 0

3-61

3 Using Symbolic Math Toolbox™ Software

The first eigenvalue is zero. The corresponding eigenvector (the first column
of Td) is the same as the basis for the null space found in the last section. The
other two eigenvalues are the result of applying the quadratic formula to

x x2 64
45

253
2160

− + which is the quadratic factor in factor(poly(H)):

syms x
g = simple(factor(poly(H))/x);
solve(g)

ans =
12589^(1/2)/180 + 32/45
32/45 - 12589^(1/2)/180

Closed form symbolic expressions for the eigenvalues are possible only when
the characteristic polynomial can be expressed as a product of rational
polynomials of degree four or less. The Rosser matrix is a classic numerical
analysis test matrix that illustrates this requirement. The statement

R = sym(rosser)

generates

R =
[611, 196, -192, 407, -8, -52, -49, 29]
[196, 899, 113, -192, -71, -43, -8, -44]
[-192, 113, 899, 196, 61, 49, 8, 52]
[407, -192, 196, 611, 8, 44, 59, -23]
[-8, -71, 61, 8, 411, -599, 208, 208]
[-52, -43, 49, 44, -599, 411, 208, 208]
[-49, -8, 8, 59, 208, 208, 99, -911]
[29, -44, 52, -23, 208, 208, -911, 99]

The commands

p = poly(R);
pretty(factor(p))

produce

3-62

Linear Algebra

2 2 2

x (x - 1020) (x - 1040500) (x - 1020 x + 100) (x - 1000)

The characteristic polynomial (of degree 8) factors nicely into the product of
two linear terms and three quadratic terms. You can see immediately that
four of the eigenvalues are 0, 1020, and a double root at 1000. The other four
roots are obtained from the remaining quadratics. Use

eig(R)

to find all these values

ans =
0

1000
1000
1020

510 - 100*26^(1/2)
100*26^(1/2) + 510

-10*10405^(1/2)
10*10405^(1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix
to have a characteristic polynomial that factors into such simple form. If you
change the two “corner” elements of R from 29 to 30 with the commands

S = R; S(1,8) = 30; S(8,1) = 30;

and then try

p = poly(S)

you find

p =
x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...
- 5327831918568*x^4 + 4287832912719760*x^3...
- 1082699388411166000*x^2 + 51264008540948000*x...
+ 40250968213600000

3-63

3 Using Symbolic Math Toolbox™ Software

You also find that factor(p) is p itself. That is, the characteristic polynomial
cannot be factored over the rationals.

For this modified Rosser matrix

F = eig(S)

returns

F =
1020.420188201504727818545749884

1019.9935501291629257348091808173
1019.5243552632016358324933278291
1000.1206982933841335712817075454
999.94691786044276755320289228602

0.21803980548301606860857564424981
-0.17053529728768998575200874607757

-1020.05321425589151659318942526

Notice that these values are close to the eigenvalues of the original Rosser
matrix. Further, the numerical values of F are a result of MuPAD software’s
floating-point arithmetic. Consequently, different settings of digits do not
alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but
closed form solutions are rare. The Givens transformation is generated as the
matrix exponential of the elementary matrix

A =
−
⎡

⎣
⎢

⎤

⎦
⎥

0 1
1 0

.

Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return

G =
[1/(2*exp(t*i)) + exp(t*i)/2,

3-64

Linear Algebra

i/(2*exp(t*i)) - (exp(t*i)*i)/2]
[- i/(2*exp(t*i)) + (exp(t*i)*i)/2,

1/(2*exp(t*i)) + exp(t*i)/2]

You can simplify this expression with the simple command:

[G,how] = simple(G)

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

how =
simplify

Next, the command

g = eig(G)

produces

g =
cos(t) - sin(t)*i
cos(t) + sin(t)*i

You can use simple to simplify this form of g:

[g,how] = simple(g)

g =
1/exp(t*i)

exp(t*i)

how =
rewrite(exp)

Jordan Canonical Form
The Jordan canonical form results from attempts to diagonalize a matrix
by a similarity transformation. For a given matrix A, find a nonsingular
matrix V, so that inv(V)*A*V, or, more succinctly, J = V\A*V, is “as close to
diagonal as possible.” For almost all matrices, the Jordan canonical form is
the diagonal matrix of eigenvalues and the columns of the transformation

3-65

3 Using Symbolic Math Toolbox™ Software

matrix are the eigenvectors. This always happens if the matrix is symmetric
or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple
eigenvalues cannot be diagonalized. The Jordan form has the eigenvalues
on its diagonal, but some of the superdiagonal elements are one, instead of
zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the
generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change
in A causes its Jordan form to be diagonal. This makes it very difficult to
compute the Jordan form reliably with floating-point arithmetic. It also
implies that A must be known exactly (i.e., without roundoff error, etc.). Its
elements must be integers, or ratios of small integers. In particular, the
variable-precision calculation, jordan(vpa(A)), is not allowed.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])

A =
[12, 32, 66, 116]
[-25, -76, -164, -294]
[21, 66, 143, 256]
[-6, -19, -41, -73]

Then

[V,J] = jordan(A)

produces

V =
[4, -2, 4, 3]
[-6, 8, -11, -8]

3-66

Linear Algebra

[4, -7, 10, 7]
[-1, 2, -3, -2]

J =
[1, 1, 0, 0]
[0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only
two eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They
satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues
satisfy the relationships

()A I v v− =1 2 1

() .A I v v− =2 4 3

Singular Value Decomposition
Only the variable-precision numeric computation of the complete singular
vector decomposition is available in the toolbox. One reason for this is that
the formulas that result from symbolic computation are usually too long and
complicated to be of much use. If A is a symbolic matrix of floating-point
or variable-precision numbers, then

S = svd(A)

computes the singular values of A to an accuracy determined by the current
setting of digits. And

3-67

3 Using Symbolic Math Toolbox™ Software

[U,S,V] = svd(A);

produces two orthogonal matrices, U and V, and a diagonal matrix, S, so that

A = U*S*V';

Consider the n-by-n matrix A with elements defined by A(i,j) = 1/(i - j +
1/2). The most obvious way of generating this matrix is

n = 5;
for i=1:n

for j=1:n
A(i,j) = sym(1/(i-j+1/2));

end
end

For n = 5, the matrix is

A

A =
[2, -2, -2/3, -2/5, -2/7]
[2/3, 2, -2, -2/3, -2/5]
[2/5, 2/3, 2, -2, -2/3]
[2/7, 2/5, 2/3, 2, -2]
[2/9, 2/7, 2/5, 2/3, 2]

It turns out many of the singular values of these matrices are close to π.

The most efficient way to generate the matrix is

n = 5;
[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));

Since the elements of A are the ratios of small integers, vpa(A) produces
a variable-precision representation, which is accurate to digits precision.
Hence

S = svd(vpa(A))

3-68

Linear Algebra

computes the desired singular values to full accuracy. With n = 16 and
digits(30), the result is

S =
3.14159265358979323846255035973
3.14159265358979323843066846713
3.14159265358979323325290142782
3.14159265358979270342635559052
3.1415926535897543920684990722

3.14159265358767361712392612382
3.14159265349961053143856838564
3.14159265052654880815569479613
3.14159256925492306470284863101
3.14159075458605848728982577118
3.1415575435991808369105065826

3.14106044663470063805218371923
3.13504054399744654843898901261
3.07790297231119748658424727353
2.69162158686066606774782763593
1.20968137605668985332455685355

Compare S with pi, the floating-point representation of π. In the vector
below, the first element is computed by subtraction with variable-precision
arithmetic and then converted to a double:

format long;
double(pi*ones(16,1)-S)

The results are

ans =
0.000000000000000
0.000000000000000
0.000000000000000
0.000000000000001
0.000000000000039
0.000000000002120
0.000000000090183
0.000000003063244
0.000000084334870
0.000001899003735

3-69

3 Using Symbolic Math Toolbox™ Software

0.000035109990612
0.000532206955093
0.006552109592347
0.063689681278596
0.449971066729127
1.931911277533103

Since the relative accuracy of pi is pi*eps, which is 6.9757e-16, the result
confirms the suspicion that four of the singular values of the 16-by-16 example
equal π to floating-point accuracy.

Eigenvalue Trajectories
This example applies several numeric, symbolic, and graphic techniques to
study the behavior of matrix eigenvalues as a parameter in the matrix is
varied. This particular setting involves numerical analysis and perturbation
theory, but the techniques illustrated are more widely applicable.

In this example, you consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3.

First, you perturb A by another matrix E and parameter t A A tE: → + . As

t increases from 0 to 10-6, the eigenvalues 1 1= , 2 2= , 3 3= change to

1 1 5596 0 2726′ = +. . i , 2 1 5596 0 2726′ = −. . i , 3 2 8808′ = . .

3-70

Linear Algebra

0 0.5 1 1.5 2 2.5 3 3.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

λ(1) λ(2) λ(3)

λ’(1)

λ’(2)

λ’(3)

This, in turn, means that for some value of t = < < −τ τ, 0 10 6 , the perturbed

matrix A(t) = A + tE has a double eigenvalue  1 2= . The example shows how
to find the value of t, called τ, where this happens.

The starting point is a MATLAB test example, known as gallery(3).

A = gallery(3)

A =
-149 -50 -154
537 180 546
-27 -9 -25

This is an example of a matrix whose eigenvalues are sensitive to the
effects of roundoff errors introduced during their computation. The actual
computed eigenvalues may vary from one machine to another, but on a typical
workstation, the statements

3-71

3 Using Symbolic Math Toolbox™ Software

format long
e = eig(A)

produce

e =
1.000000000010722
1.999999999991790
2.999999999997399

Of course, the example was created so that its eigenvalues are actually 1, 2,
and 3. Note that three or four digits have been lost to roundoff. This can be
easily verified with the toolbox. The statements

B = sym(A);
e = eig(B)'
p = poly(B)
f = factor(p)

produce

e =
[1, 2, 3]

p =
x^3 - 6*x^2 + 11*x - 6

f =
(x - 3)*(x - 1)*(x - 2)

Are the eigenvalues sensitive to the perturbations caused by roundoff error
because they are “close together”? Ordinarily, the values 1, 2, and 3 would
be regarded as “well separated.” But, in this case, the separation should be
viewed on the scale of the original matrix. If A were replaced by A/1000,
the eigenvalues, which would be .001, .002, .003, would “seem” to be closer
together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a
carefully chosen perturbation of the matrix, it is possible to make two of its
eigenvalues coalesce into an actual double root that is extremely sensitive
to roundoff and other errors.

3-72

Linear Algebra

One good perturbation direction can be obtained from the outer product of the
left and right eigenvectors associated with the most sensitive eigenvalue. The
following statement creates the perturbation matrix:

E = [130,-390,0;43,-129,0;133,-399,0]

E =
130 -390 0
43 -129 0

133 -399 0

The perturbation can now be expressed in terms of a single, scalar parameter
t. The statements

syms x t
A = A + t*E

replace A with the symbolic representation of its perturbation:

A =
[130*t - 149, - 390*t - 50, -154]
[43*t + 537, 180 - 129*t, 546]
[133*t - 27, - 399*t - 9, -25]

Computing the characteristic polynomial of this new A

p = simple(poly(A))

gives

p =
11*x - 1221271*t - x^2*(t + 6) + 492512*t*x + x^3 - 6

p is a cubic in x whose coefficients vary linearly with t.

It turns out that when t is varied over a very small interval, from 0 to 1.0e–6,
the desired double root appears. This can best be seen graphically. The first
figure shows plots of p, considered as a function of x, for three different values
of t: t = 0, t = 0.5e–6, and t = 1.0e–6. For each value, the eigenvalues are
computed numerically and also plotted:

x = .8:.01:3.2;

3-73

3 Using Symbolic Math Toolbox™ Software

for k = 0:2
c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)
plot(x,y,'-',x,0*x,':',lambda,0*lambda,'o')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str(k*0.5e-6)]);

end

1 1.5 2 2.5 3
−0.5

0

0.5
t = 0

1 1.5 2 2.5 3
−0.5

0

0.5
t = 5e−007

1 1.5 2 2.5 3
−0.5

0

0.5
t = 1e−006

The bottom subplot shows the unperturbed polynomial, with its three roots at
1, 2, and 3. The middle subplot shows the first two roots approaching each
other. In the top subplot, these two roots have become complex and only
one real root remains.

The next statements compute and display the actual eigenvalues

e = eig(A);

3-74

Linear Algebra

ee = subexpr(e);

sigma =
(1221271*t)/2 + (t + 6)^3/27 - ((492512*t + 11)*(t + 6))/6 +...
(((492512*t)/3 - (t + 6)^2/9 + 11/3)^3 + ((1221271*t)/2 +...
(t + 6)^3/27 - ((492512*t + 11)*(t + 6))/6 + 3)^2)^(1/2) + 3

pretty(ee)

showing that e(2) and e(3) form a complex conjugate pair:

+- -+
| t 1/3 |
| - + sigma - #3 + 2 |
| 3 |
| |
| 1/3 |
| t sigma |
| - - -------- + #1 + 2 - #2 |
| 3 2 |
| |
| 1/3 |
| t sigma |
| - - -------- + #1 + 2 + #2 |
| 3 2 |
+- -+

where

2
492512 t (t + 6)
-------- - -------- + 11/3

3 9
#1 = --------------------------

1/3
2 sigma

1/2 1/3
3 (sigma + #3) i

#2 = ----------------------

3-75

3 Using Symbolic Math Toolbox™ Software

2

2
492512 t (t + 6)
-------- - -------- + 11/3

3 9
#3 = --------------------------

1/3
sigma

Next, the symbolic representations of the three eigenvalues are evaluated at
many values of t

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c

lambda(:,k) = double(subs(e(k),t,tvals));
end
plot(lambda,tvals)
xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

to produce a plot of their trajectories.

3-76

Linear Algebra

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

λ

t

Eigenvalue Transition

Above t = 0.8e-6, the graphs of two of the eigenvalues intersect, while below
t = 0.8e–6, two real roots become a complex conjugate pair. What is the precise
value of t that marks this transition? Let τ denote this value of t.

One way to find the exact value of τ involves polynomial discriminants. The
discriminant of a quadratic polynomial is the familiar quantity under the
square root sign in the quadratic formula. When it is negative, the two roots
are complex.

There is no discrim function in the toolbox, but there is one in the MuPAD
language. The statement

doc(symengine,'discrim')

gives the MuPAD help for the function.

3-77

3 Using Symbolic Math Toolbox™ Software

This shows that the discrim function is in the polylib library. Use these
commands

syms a b c x
evalin(symengine,'polylib::discrim(a*x^2+b*x+c, x)')

to show the generic quadratic’s discriminant, b2 - 4ac:

ans =
b^2 - 4*a*c

The discriminant for the perturbed cubic characteristic polynomial is
obtained, using

discrim = feval(symengine,'polylib::discrim',p,x)

which produces

discrim =
242563185060*t^4 - 477857003880091920*t^3 +...
1403772863224*t^2 - 5910096*t + 4

The quantity τ is one of the four roots of this quartic. You can find a numeric
value for τ with the following code.

s = solve(discrim);
tau = vpa(s)

3-78

Linear Algebra

tau =

1970031.04061804553618913725474883634597991201389

0.000000783792490596794010485879469854518820556090553664

0.00000107692481604921513807537160160597784208236311263 - 0.00000308544636502289065492747*i

0.00000308544636502289065492746538275636180217710757295*i + 0.00000107692481604921513807537160160597784249167873707

Of the four solutions, you know that

tau = tau(2)

is the transition point

tau =
0.00000078379249059679401048084

because it is closest to the previous estimate.

A more generally applicable method for finding τ is based on the fact that, at a
double root, both the function and its derivative must vanish. This results in
two polynomial equations to be solved for two unknowns. The statement

sol = solve(p,diff(p,'x'))

solves the pair of algebraic equations p = 0 and dp/dx = 0 and produces

sol =
t: [4x1 sym]
x: [4x1 sym]

Find τ now by

format short
tau = double(sol.t(2))

which reveals that the second element of sol.t is the desired value of τ:

tau =
7.8379e-007

Therefore, the second element of sol.x

3-79

3 Using Symbolic Math Toolbox™ Software

sigma = double(sol.x(2))

is the double eigenvalue

sigma =
1.5476

To verify that this value of τ does indeed produce a double eigenvalue at

 = 1 5476. , substitute τ for t in the perturbed matrix A(t) = A + tE and find
the eigenvalues of A(t). That is,

e = eig(double(subs(A, t, tau)))

e =
1.5476
1.5476
2.9048

confirms that  = 1 5476. is a double eigenvalue of A(t) for t = 7.8379e–07.

3-80

Solving Equations

Solving Equations

In this section...

“Solving Algebraic Equations” on page 3-81

“Several Algebraic Equations” on page 3-82

“Single Differential Equation” on page 3-85

“Several Differential Equations” on page 3-88

Solving Algebraic Equations
If S is a symbolic expression,

solve(S)

attempts to find values of the symbolic variable in S (as determined by
symvar) for which S is zero. For example,

syms a b c x
S = a*x^2 + b*x + c;
solve(S)

uses the familiar quadratic formula to produce

ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable
as an additional argument. For example, if you want to solve S for b, use
the command

b = solve(S,b)

which returns

b =
-(a*x^2 + c)/x

3-81

3 Using Symbolic Math Toolbox™ Software

Note that these examples assume equations of the form f(x) = 0. If you need
to solve equations of the form f(x) = q(x), you must use quoted strings. In
particular, the command

s = solve('cos(2*x) + sin(x) = 1')

returns a vector with three solutions.

s =
0

pi/6
(5*pi)/6

There are also solutions at each of these results plus kπ for integer k, as you
can see in the MuPAD solution:

Several Algebraic Equations
This section explains how to solve systems of equations using Symbolic Math
Toolbox software. As an example, suppose you have the system

x y

x
y

2 2 0

2

=

− =  ,

and you want to solve for x and y. First, create the necessary symbolic objects.

syms x y;
alpha = sym('alpha');

There are several ways to address the output of solve. One is to use a
two-output call

[x, y] = solve(x^2*y^2, x-y/2 - alpha)

which returns

3-82

Solving Equations

x =
alpha

0

y =
0

-2*alpha

Modify the first equation to x2y2 = 1 and there are more solutions.

eqs1 = 'x^2*y^2=1, x-y/2-alpha';
[x,y] = solve(eqs1)

produces four distinct solutions:

x =
alpha/2 + (alpha^2 + 2)^(1/2)/2
alpha/2 + (alpha^2 - 2)^(1/2)/2
alpha/2 - (alpha^2 + 2)^(1/2)/2
alpha/2 - (alpha^2 - 2)^(1/2)/2

y =
(alpha^2 + 2)^(1/2) - alpha
(alpha^2 - 2)^(1/2) - alpha

- alpha - (alpha^2 + 2)^(1/2)
- alpha - (alpha^2 - 2)^(1/2)

Since you did not specify the dependent variables, solve uses symvar to
determine the variables.

This way of assigning output from solve is quite successful for “small”
systems. Plainly, if you had, say, a 10-by-10 system of equations, typing

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

is both awkward and time consuming. To circumvent this difficulty, solve
can return a structure whose fields are the solutions. In particular, consider
the system u^2 - v^2 = a^2, u + v = 1, a^2 - 2*a = 3. The command

S = solve('u^2 - v^2 = a^2', 'u + v = 1', 'a^2 - 2*a = 3')

returns

3-83

3 Using Symbolic Math Toolbox™ Software

S =
a: [2x1 sym]
u: [2x1 sym]
v: [2x1 sym]

The solutions for a reside in the “a-field” of S. That is,

S.a

produces

ans =
-1
3

Similar comments apply to the solutions for u and v. The structure S can
now be manipulated by field and index to access a particular portion of the
solution. For example, if you want to examine the second solution, you can
use the following statement

s2 = [S.a(2), S.u(2), S.v(2)]

to extract the second component of each field.

s2 =
[3, 5, -4]

The following statement

M = [S.a, S.u, S.v]

creates the solution matrix M

M =
[-1, 1, 0]
[3, 5, -4]

whose rows comprise the distinct solutions of the system.

Linear systems of simultaneous equations can also be solved using matrix
division. For example,

clear u v x y

3-84

Solving Equations

syms u v x y
S = solve(x + 2*y - u, 4*x + 5*y - v);
sol = [S.x; S.y]

A = [1 2; 4 5];
b = [u; v];
z = A\b

results in

sol =
(2*v)/3 - (5*u)/3

(4*u)/3 - v/3

z =
(2*v)/3 - (5*u)/3

(4*u)/3 - v/3

Thus s and z produce the same solution, although the results are assigned
to different variables.

Single Differential Equation
The function dsolve computes symbolic solutions to ordinary differential
equations. The equations are specified by symbolic expressions containing
the letter D to denote differentiation. The symbols D2, D3, ... DN, correspond to
the second, third, ..., Nth derivative, respectively. Thus, D2y is the toolbox
equivalent of d2y/dt2. The dependent variables are those preceded by D and
the default independent variable is t. Note that names of symbolic variables
should not contain D. The independent variable can be changed from t to some
other symbolic variable by including that variable as the last input argument.

Initial conditions can be specified by additional equations. If initial conditions
are not specified, the solutions contain constants of integration, C1, C2, etc.

The output from dsolve parallels the output from solve. That is, you can call
dsolve with the number of output variables equal to the number of dependent
variables or place the output in a structure whose fields contain the solutions
of the differential equations.

3-85

3 Using Symbolic Math Toolbox™ Software

Example 1
The following call to dsolve

dsolve('Dy = t*y')

uses y as the dependent variable and t as the default independent variable.

The output of this command is

ans =
C2*exp(t^2/2)

y = C*exp(t^2/2) is a solution to the equation for any constant C.

To specify an initial condition, use

y = dsolve('Dy = t*y', 'y(0) = 2')

This produces

y =
2*exp(t^2/2)

Notice that y is in the MATLAB workspace, but the independent variable t
is not. Thus, the command diff(y,t) returns an error. To place t in the
workspace, enter syms t.

Example 2
Nonlinear equations may have multiple solutions, even when initial
conditions are given:

x = dsolve('(Dx + x)^2 = 1', 'x(0) = 0')

results in

x =
1/exp(t) - 1
1 - 1/exp(t)

3-86

Solving Equations

Example 3
Here is a second-order differential equation with two initial conditions, and
the default independent variable changed to x. The commands

y = dsolve('D2y = cos(2*x) - y', 'y(0) = 1',
'Dy(0) = 0', 'x');
simplify(y)

produce

ans =
1 - (8*(cos(x)/2 - 1/2)^2)/3

Example 4
The key issues in this example are the order of the equation and the initial
conditions. To solve the ordinary differential equation

d u

dx
u

3

3
=

u u u() , () , () ,0 1 0 1 0= ′ = − ′′ = 

with x as the independent variable, type

u = dsolve('D3u = u',...
'u(0) = 1', 'Du(0) = -1', 'D2u(0) = pi', 'x')

Use D3u to represent d3u/dx3 and D2u(0) for ′′u ()0 .

u =
(pi*exp(x))/3 - (cos((3^(1/2)*x)/2)*(pi/3 - 1))/exp(x/2) ...
- (3^(1/2)*sin((3^(1/2)*x)/2)*(pi + 1))/(3*exp(x/2))

Further ODE Examples
This table shows a few more examples of differential equations and their
Symbolic Math Toolbox syntax. The final entry in the table is the Airy
differential equation, whose solution is referred to as the Airy function.

3-87

3 Using Symbolic Math Toolbox™ Software

Differential Equation MATLAB Command

dy
dt

y t e t+ = −4 ()

y(0) = 1

y = dsolve('Dy+4*y = exp(-t)',
'y(0) = 1')

2x2y′′ + 3xy′ – y = 0
(′ = d/dx)

y = dsolve('2*x^2*D2y + 3*x*Dy - y =
0', 'x')

d y

dx
xy x

2

2
= ()

y y K() , () ()/0 0 3
1

2 31 3= =


(The Airy equation)

y = dsolve('D2y = x*y', 'y(0) = 0',
'y(3) = besselk(1/3, 2*sqrt(3))/pi',
'x')

Several Differential Equations
The function dsolve can handle several ordinary differential equations in
several variables, with or without initial conditions. For example, here is a
pair of linear, first-order equations.

S = dsolve('Df = 3*f + 4*g', 'Dg = -4*f + 3*g')

The toolbox returns the computed solutions in the structure S. You can
determine the values of f and g by typing

f = S.f
g = S.g

f =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)

g =
C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

If you prefer to recover f and g directly, as well as include initial conditions,
type

[f, g] = dsolve('Df = 3*f + 4*g, Dg = -4*f + 3*g',...

3-88

Solving Equations

'f(0) = 0, g(0) = 1')

f =
sin(4*t)*exp(3*t)

g =
cos(4*t)*exp(3*t)

Now, suppose you are solving a system of differential equations in matrix
form. For example, solve the system Y ′= AY + B, where A, B, and Y represent
the following matrices:

syms t x y;
A = [1 2; -1 1];
B = [1; t];
Y = [x; y];
sys = A*Y + B

sys =
x + 2*y + 1

t - x + y

The dsolve function does not accept matrices. To be able to use this solver,
extract the components of the matrix and convert them to strings:

eq1 = char(sys(1))
eq2 = char(sys(2))

eq1 =
x + 2*y + 1

eq2 =
t - x + y

Use the strcat function to concatenate the left and right sides of the
equations. Use the dsolve function to solve the system:

[x, y] = dsolve(strcat('Dx = ',eq1), strcat('Dy = ',eq2))

x =
2^(1/2)*exp(t)*cos(2^(1/2)*t)*(C6 + (4*sin(2^(1/2)*t) +...
2^(1/2)*cos(2^(1/2)*t) + 6*t*sin(2^(1/2)*t) +...

3-89

3 Using Symbolic Math Toolbox™ Software

6*2^(1/2)*t*cos(2^(1/2)*t))/(18*exp(t))) +...
2^(1/2)*exp(t)*sin(2^(1/2)*t)*(C5 - (4*cos(2^(1/2)*t) -...
2^(1/2)*sin(2^(1/2)*t) + 6*t*cos(2^(1/2)*t) -...
6*2^(1/2)*t*sin(2^(1/2)*t))/(18*exp(t)))

y =
exp(t)*cos(2^(1/2)*t)*(C5 - (4*cos(2^(1/2)*t) -...
2^(1/2)*sin(2^(1/2)*t) + 6*t*cos(2^(1/2)*t) -...
6*2^(1/2)*t*sin(2^(1/2)*t))/(18*exp(t))) -...
exp(t)*sin(2^(1/2)*t)*(C6 + (4*sin(2^(1/2)*t) +...
2^(1/2)*cos(2^(1/2)*t) + 6*t*sin(2^(1/2)*t) +...
6*2^(1/2)*t*cos(2^(1/2)*t))/(18*exp(t)))

3-90

Integral Transforms and Z-Transforms

Integral Transforms and Z-Transforms

In this section...

“Fourier and Inverse Fourier Transforms” on page 3-91

“Laplace and Inverse Laplace Transforms” on page 3-98

“Z-Transforms and Inverse Z-Transforms” on page 3-104

Fourier and Inverse Fourier Transforms
The Fourier transform of a function f(x) is defined as

F f w f x e dxiwx[] = −

−∞

∞

∫() () ,

and the inverse Fourier transform (IFT) as

F f x f w e dwiwx−

−∞

∞
[] = ∫1 1

2
() () .



This documentation refers to this formulation as the Fourier transform of f
with respect to x as a function of w. Or, more concisely, the Fourier transform
of f with respect to x at w. Mathematicians often use the notation F[f] to
denote the Fourier transform of f. In this setting, the transform is taken with
respect to the independent variable of f (if f = f(t), then t is the independent
variable; f = f(x) implies that x is the independent variable, etc.) at the default
variable w. This documentation refers to F[f] as the Fourier transform of f at
w and F–1[f] is the IFT of f at x. See fourier and ifourier in the reference
pages for tables that show the Symbolic Math Toolbox commands equivalent
to various mathematical representations of the Fourier and inverse Fourier
transforms.

For example, consider the Fourier transform of the Cauchy density function,
(π(1 + x2))–1:

syms x
cauchy = 1/(pi*(1+x^2));

3-91

3 Using Symbolic Math Toolbox™ Software

fcauchy = fourier(cauchy)

fcauchy =
((pi*heaviside(w))/exp(w) + pi*heaviside(-w)*exp(w))/pi

fcauchy = expand(fcauchy)

fcauchy =
heaviside(w)/exp(w) + heaviside(-w)*exp(w)

ezplot(fcauchy)

The Fourier transform is symmetric, since the original Cauchy density
function is symmetric.

To recover the Cauchy density function from the Fourier transform, call
ifourier:

finvfcauchy = ifourier(fcauchy)

3-92

Integral Transforms and Z-Transforms

finvfcauchy =
-(1/(x*i - 1) - 1/(x*i + 1))/(2*pi)

simplify(finvfcauchy)

ans =
1/(pi*(x^2 + 1))

An application of the Fourier transform is the solution of ordinary and partial
differential equations over the real line. Consider the deformation of an
infinitely long beam resting on an elastic foundation with a shock applied to
it at a point. A “real world” analogy to this phenomenon is a set of railroad
tracks atop a road bed.

The shock could be induced by a pneumatic hammer blow.

The differential equation idealizing this physical setting is

d y

dx

k
EI

y
EI

x x
4

4
1+ = − ∞ < < ∞δ(), .

Here, E represents elasticity of the beam (railroad track), I is the “beam
constant,” and k is the spring (road bed) stiffness. The shock force on the right

3-93

3 Using Symbolic Math Toolbox™ Software

side of the differential equation is modeled by the Dirac Delta function δ(x).
The Dirac Delta function has the following important property:

f x y y dy f x() () ().− =
−∞

∞

∫ δ

A definition of the Dirac Delta function is

 () lim (),(/ , /)x n x
n

n n=
→∞

−1 2 1 2

where

(/ , /) ()− =
− < <⎧

⎨
⎪

⎩⎪
1 2 1 2

1
1

2
1

2
0

n n x n
x

n
for

otherwise.

You can evaluate the Dirac Delta function at a point (say) x = 3, using the
commands

syms x
del = sym('dirac(x)');
vpa(subs(del,x,3))

which return

ans =
0.0

Returning to the differential equation, let Y(w) = F[y(x)](w) and
Δ(w) = F[δ(x)](w). Indeed, try the command fourier(del,x,w). The Fourier
transform turns differentiation into exponentiation, and, in particular,

F
d y

dx
w w Y w

4

4
4⎡

⎣
⎢

⎤

⎦
⎥ =() ().

To see a demonstration of this property, try this

3-94

Integral Transforms and Z-Transforms

syms w x
fourier(diff(sym('y(x)'), x, 4), x, w)

which returns

ans =
w^4*transform::fourier(y(x), x, -w)

Note that you can call the fourier command with one, two, or three inputs
(see the reference pages for fourier). With a single input argument,
fourier(f) returns a function of the default variable w. If the input argument
is a function of w, fourier(f) returns a function of t. All inputs to fourier
must be symbolic objects.

Applying the Fourier transform to the differential equation above yields the
algebraic equation

w
k

EI
Y w w4 +⎛

⎝⎜
⎞
⎠⎟

=() (),Δ

or

Y(w) = Δ(w)G(w),

where

G w
w

k
EI

F g x w() () ()=
+

= []1
4

for some function g(x). That is, g is the inverse Fourier transform of G:

g(x) = F–1[G(w)](x)

The Symbolic Math Toolbox counterpart to the IFT is ifourier. This behavior
of ifourier parallels fourier with one, two, or three input arguments (see
the reference pages for ifourier).

Continuing with the solution of the differential equation, observe that the
ratio

3-95

3 Using Symbolic Math Toolbox™ Software

K
EI

is a relatively “large” number since the road bed has a high stiffness constant
k and a railroad track has a low elasticity E and beam constant I. Make the
simplifying assumption that

K
EI

= 1024.

This is done to ease the computation of F –1[G(w)](x). Now type

G = 1/(w^4 + 1024);
g = ifourier(G, w, x);
g = simplify(g);
pretty(g)

and see

1/2 / pi \

2 sin| -- + 4 x | heaviside(x)

\ 4 /

--------------------------------- -...

512 exp(4 x)

1/2 / pi \

2 heaviside(-x) sin| 4 x - -- | exp(4 x)

\ 4 /

512

Notice that g contains the Heaviside distribution

H x
x
x
x

()
.

=
>
<
=

⎧
⎨
⎪

⎩⎪

1 0
0 0

0

for
for

1/2 for

3-96

Integral Transforms and Z-Transforms

Since Y is the product of Fourier transforms, y is the convolution of the
transformed functions. That is, F[y] = Y(w) = Δ(w) G(w) = F[δ] F[g] implies

y x g x g x y y dy g x() ()() () () ().= ∗ = − =
−∞

∞

∫ 

by the special property of the Dirac Delta function. To plot this function,
substitute the domain of x into y(x), using the subs command.

XX = -3:0.05:3;
YY = double(subs(g, x, XX));
plot(XX, YY)
title('Beam Deflection for a Point Shock')
xlabel('x'); ylabel('y(x)');

The resulting graph

3-97

3 Using Symbolic Math Toolbox™ Software

shows that the impact of a blow on a beam is highly localized; the greatest
deflection occurs at the point of impact and falls off sharply from there.

Laplace and Inverse Laplace Transforms
The Laplace transform of a function f(t) is defined as

L f s f t e dtts[]() = −
∞

∫ () ,
0

while the inverse Laplace transform (ILT) of f(s) is

3-98

Integral Transforms and Z-Transforms

L f t
i

f s e dsst

c i

c i
−

− ∞

+ ∞
[] = ∫1 1

2
() () ,



where c is a real number selected so that all singularities of f(s) are to the left
of the line s = c. The notation L[f] denotes the Laplace transform of f at s.
Similarly, L–1[f] is the ILT of f at t.

The Laplace transform has many applications including the solution
of ordinary differential equations/initial value problems. Consider the
resistance-inductor-capacitor (RLC) circuit below.

Let Rj and Ij, j = 1, 2, 3 be resistances (measured in ohms) and currents
(amperes), respectively; L be inductance (henrys), and C be capacitance
(farads); E(t) be the electromotive force, and Q(t) be the charge.

By applying Kirchhoff’s voltage and current laws, Ohm’s Law, and Faraday’s
Law, you can arrive at the following system of simultaneous ordinary
differential equations.

3-99

3 Using Symbolic Math Toolbox™ Software

dI
dt

R
L

dQ
dt

R R
L

I I I1 2 1 2
1 1 00+ = − =, () .

dQ
dt R R

E t
C

Q t
R

R R
I Q Q=

+
−⎛

⎝⎜
⎞
⎠⎟
+

+
=1 1

0
3 2

2

3 2
1 0() () , () .

Solve this system of differential equations using laplace. First treat the Rj,
L, and C as (unknown) real constants and then supply values later on in
the computation.

syms R1 R2 R3 L C real
dI1 = sym('diff(I1(t),t)'); dQ = sym('diff(Q(t),t)');
I1 = sym('I1(t)'); Q = sym('Q(t)');
syms t s
E = sin(t); % Voltage
eq1 = dI1 + R2*dQ/L - (R2 - R1)*I1/L;
eq2 = dQ - (E - Q/C)/(R2 + R3) - R2*I1/(R2 + R3);

At this point, you have constructed the equations in the MATLAB workspace.
An approach to solving the differential equations is to apply the Laplace
transform, which you will apply to eq1 and eq2. Transforming eq1 and eq2

L1 = laplace(eq1,t,s)
L2 = laplace(eq2,t,s)

returns

L1 =
s*laplace(I1(t), t, s) - I1(0)
+ ((R1 - R2)*laplace(I1(t), t, s))/L
- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2 =
s*laplace(Q(t), t, s) - Q(0)
- (R2*laplace(I1(t), t, s))/(R2 + R3) - (C/(s^2 + 1)
- laplace(Q(t), t, s))/(C*(R2 + R3))

Now you need to solve the system of equations L1 = 0, L2 = 0 for
laplace(I1(t),t,s) and laplace(Q(t),t,s), the Laplace transforms of
I1 and Q, respectively. To do this, make a series of substitutions. For the

3-100

Integral Transforms and Z-Transforms

purposes of this example, use the quantities R1 = 4 Ω (ohms), R2 = 2 Ω,
R3 = 3 Ω, C = 1/4 farads, L = 1.6 H (henrys), I1(0) = 15 A (amperes), and Q(0)
= 2 A/sec. Substituting these values in L1

syms LI1 LQ
NI1 = subs(L1,{R1,R2,R3,L,C,'I1(0)','Q(0)'}, ...

{4,2,3,1.6,1/4,15,2})

returns

NI1 =
s*laplace(I1(t), t, s) + (5*s*laplace(Q(t), t, s))/4
+ (5*laplace(I1(t), t, s))/4 - 35/2

The substitution

NQ =
subs(L2,{R1,R2,R3,L,C,'I1(0)','Q(0)'},{4,2,3,1.6,1/4,15,2})

returns

NQ =
s*laplace(Q(t), t, s) - 1/(5*(s^2 + 1))
+ (4*laplace(Q(t), t, s))/5 - (2*laplace(I1(t), t, s))/5 - 2

To solve for laplace(I1(t),t,s) and laplace(Q(t),t,s), make a final
pair of substitutions. First, replace the strings 'laplace(I1(t),t,s)' and
'laplace(Q(t),t,s)' by the syms LI1 and LQ, using

NI1 =...
subs(NI1,{'laplace(I1(t),t,s)','laplace(Q(t),t,s)'},{LI1,LQ})

to obtain

NI1 =
(5*LI1)/4 + LI1*s + (5*LQ*s)/4 - 35/2

Collecting terms

NI1 = collect(NI1,LI1)

gives

3-101

3 Using Symbolic Math Toolbox™ Software

NI1 =
(s + 5/4)*LI1 + (5*LQ*s)/4 - 35/2

A similar string substitution

NQ = ...
subs(NQ,{'laplace(I1(t),t,s)','laplace(Q(t),t,s)'},{LI1,LQ})

yields

NQ =
(4*LQ)/5 - (2*LI1)/5 + LQ*s - 1/(5*(s^2 + 1)) - 2

which, after collecting terms,

NQ = collect(NQ,LQ)

gives

NQ =
(s + 4/5)*LQ - (2*LI1)/5 - 1/(5*(s^2 + 1)) - 2

Now, solving for LI1 and LQ

[LI1, LQ] = solve(NI1, NQ, LI1, LQ)

you obtain

LI1 =

(5*(60*s^3 + 56*s^2 + 59*s + 56))/((s^2 + 1)*(20*s^2 + 51*s + 20))

LQ =

(40*s^3 + 190*s^2 + 44*s + 195)/((s^2 + 1)*(20*s^2 + 51*s + 20))

To recover I1 and Q, compute the inverse Laplace transform of LI1 and LQ.
Inverting LI1

I1 = ilaplace(LI1, s, t)

produces

I1 =
(15*(cosh((1001^(1/2)*t)/40)

3-102

Integral Transforms and Z-Transforms

- (293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879))/exp((51*t)/40)
- (5*sin(t))/51

Inverting LQ

Q = ilaplace(LQ, s, t)

yields

Q =

(4*sin(t))/51 - (5*cos(t))/51 + (107*(cosh((1001^(1/2)*t)/40)

+ (2039*1001^(1/2)*sinh((1001^(1/2)*t)/40))/15301))/(51*exp((51*t)/40))

Now plot the current I1(t) and charge Q(t) in two different time domains, 0
≤ t ≤ 10 and 5 ≤ t ≤ 25. The statements

subplot(2,2,1); ezplot(I1,[0,10]);
title('Current'); ylabel('I1(t)'); grid
subplot(2,2,2); ezplot(Q,[0,10]);
title('Charge'); ylabel('Q(t)'); grid
subplot(2,2,3); ezplot(I1,[5,25]);
title('Current'); ylabel('I1(t)'); grid
text(7,0.25,'Transient'); text(16,0.125,'Steady State');
subplot(2,2,4); ezplot(Q,[5,25]);
title('Charge'); ylabel('Q(t)'); grid
text(7,0.25,'Transient'); text(15,0.16,'Steady State');

generate the desired plots

3-103

3 Using Symbolic Math Toolbox™ Software

Note that the circuit’s behavior, which appears to be exponential decay in
the short term, turns out to be oscillatory in the long term. The apparent
discrepancy arises because the circuit’s behavior actually has two components:
an exponential part that decays rapidly (the “transient” component) and an
oscillatory part that persists (the “steady-state” component).

Z-Transforms and Inverse Z-Transforms
The (one-sided) z-transform of a function f(n) is defined as

Z f z f n z n

n
[]() = −

=

∞

∑ () .
0

The notation Z[f] refers to the z-transform of f at z. Let R be a positive number
so that the function g(z) is analytic on and outside the circle |z| = R. Then
the inverse z-transform (IZT) of g at n is defined as

3-104

Integral Transforms and Z-Transforms

Z g n
i

g z z dz nn

z R

− −

=

[] = =∫1 11
2

1 2() () , , ,...


The notation Z–1[f] means the IZT of f at n. The Symbolic Math Toolbox
commands ztrans and iztrans apply the z-transform and IZT to symbolic
expressions, respectively. See ztrans and iztrans for tables showing various
mathematical representations of the z-transform and inverse z-transform and
their Symbolic Math Toolbox counterparts.

The z-transform is often used to solve difference equations. In particular,
consider the famous “Rabbit Problem.” That is, suppose that rabbits reproduce
only on odd birthdays (1, 3, 5, 7, ...). If p(n) is the rabbit population at year n,
then p obeys the difference equation

p(n+2) = p(n+1) + p(n), p(0) = 1, p(1) = 2.

You can use ztrans to find the population each year p(n). First, apply ztrans
to the equations

pn = sym('p(n)');
pn1 = sym('p(n+1)');
pn2 = sym('p(n+2)');
syms n z
eq = pn2 - pn1 - pn;
Zeq = ztrans(eq, n, z)

to obtain

Zeq =
z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z)

- z^2*p(0) - ztrans(p(n), n, z)

Next, replace 'ztrans(p(n), n, z)' with Pz and insert the initial conditions
for p(0) and p(1).

syms Pz
Zeq = subs(Zeq,{'ztrans(p(n), n, z)', 'p(0)',
'p(1)'}, {Pz, 1, 2})

to obtain

3-105

3 Using Symbolic Math Toolbox™ Software

Zeq =
Pz*z^2 - z - Pz*z - Pz - z^2

Collecting terms

eq = collect(Zeq, Pz)

yields

eq =
(z^2 - z - 1)*Pz - z^2 - z

Now solve for Pz

P = solve(eq, Pz)

to obtain

P =
-(z^2 + z)/(- z^2 + z + 1)

To recover p(n), take the inverse z-transform of P.

p = iztrans(P, z, n);
p = simple(p)

The result is a bit complicated, but explicit:

p =
(3*5^(1/2)*(1/2 - 5^(1/2)/2)^(n - 1))/5 -
(3*5^(1/2)*(5^(1/2)/2 + 1/2)^(n - 1))/5 +
(4*(-1)^n*cos(n*(pi/2 + asinh(1/2)*i)))/i^n

Finally, plot p:

m = 1:10;
y = double(subs(p,n,m));
plot(m,y,'rO')
title('Rabbit Population');
xlabel('years'); ylabel('p');
grid on

to show the growth in rabbit population over time.

3-106

Integral Transforms and Z-Transforms

References

[1] Andrews, L.C., Shivamoggi, B.K., Integral Transforms for Engineers and
Applied Mathematicians, Macmillan Publishing Company, New York, 1986

[2] Crandall, R.E., Projects in Scientific Computation, Springer-Verlag
Publishers, New York, 1994

[3] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge
Press, Wellesley, MA, 1986

3-107

3 Using Symbolic Math Toolbox™ Software

Special Functions of Applied Mathematics

In this section...

“Numerical Evaluation of Special Functions Using mfun” on page 3-108

“Syntax and Definitions of mfun Special Functions” on page 3-109

“Diffraction Example” on page 3-114

Numerical Evaluation of Special Functions Using
mfun
Over 50 of the special functions of classical applied mathematics are available
in the toolbox. These functions are accessed with the mfun function, which
numerically evaluates special functions for the specified parameters. This
allows you to evaluate functions that are not available in standard MATLAB
software, such as the Fresnel cosine integral. In addition, you can evaluate
several MATLAB special functions in the complex plane, such as the error
function erf.

For example, suppose you want to evaluate the hyperbolic cosine integral at
the points 2 + i, 0, and 4.5. Look in the tables in “Syntax and Definitions of
mfun Special Functions” on page 3-109 to find the available functions and
their syntax. You can also enter the command

mfunlist

to see the list of functions available for mfun. This list provides a brief
mathematical description of each function, its mfun name, and the parameters
it needs. From the tables or list, you can see that the hyperbolic cosine
integral is called Chi, and it takes one complex argument.

Type

z = [2 + i 0 4.5];
w = mfun('Chi', z)

which returns

w =
2.0303 + 1.7227i NaN 13.9658

3-108

Special Functions of Applied Mathematics

mfun returns the special value NaN where the function has a singularity. The
hyperbolic cosine integral has a singularity at z = 0.

Note mfun functions perform numerical, not symbolic, calculations. The
input parameters should be scalars, vectors, or matrices of type double, or
complex doubles, not symbolic variables.

Syntax and Definitions of mfun Special Functions
The following conventions are used in the next table, unless otherwise
indicated in the Arguments column.

x, y real argument

z, z1, z2 complex argument

m, n integer argument

mfun Special Functions

Function Name Definition mfun Name Arguments

Bernoulli
numbers and
polynomials

Generating functions:

e

e
B x

t
n

xt

t n

n

n−
= ⋅

−

=

∞

∑
1

1

0
()

!

bernoulli(n)

bernoulli(n,t)
n ≥ 0

0 2< <t π

Bessel functions BesselI, BesselJ—Bessel functions
of the first kind.
BesselK, BesselY—Bessel functions
of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

v is real.

Beta function
B x y

x y
x y

(,)
() ()
()

= ⋅
+

Γ Γ
Γ

Beta(x,y)

3-109

3 Using Symbolic Math Toolbox™ Software

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Binomial
coefficients

m
n

m
n m n

⎛
⎝⎜

⎞
⎠⎟
=

−()
!

! !

= +
+() − +
Γ

Γ Γ
()

()
m

n m n
1

1 1

binomial(m,n)

Complete elliptic
integrals

Legendre’s complete elliptic integrals
of the first, second, and third kind.
This definition uses modulus k. The
numerical ellipke function and the
MuPAD functions for computing
elliptic integrals use the parameter

m k= =2 2sin  .

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complete elliptic
integrals with
complementary
modulus

Associated complete elliptic integrals
of the first, second, and third kind
using complementary modulus. This
definition uses modulus k. The
numerical ellipke function and the
MuPAD functions for computing
elliptic integrals use the parameter

m k= =2 2sin  .

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complementary
error function
and its iterated
integrals

erfc z e dt erf zt

z

() ()= ⋅ = −−
∞

∫2
1

2



erfc z e z(,)− = ⋅ −1
2 2



erfc n z erfc n t dt
z

(,) (,)= −
∞

∫ 1

erfc(z)

erfc(n,z)

n > 0

3-110

Special Functions of Applied Mathematics

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Dawson’s
integral F x e e dtx t

x

() = ⋅− ∫
2 2

0

dawson(x)

Digamma
function Ψ Γ Γ

Γ
() ln(())

()
()

x
d
dx

x
x
x

= =
′ Psi(x)

Dilogarithm
integral f x

t
t

dt
x

()
ln()=
−∫ 1

1

dilog(x) x > 1

Error function
erf z e dtt

z

() = −∫2 2

0

erf(z)

Euler numbers
and polynomials

Generating function for Euler
numbers:

1

0cosh() !t
E

t
nn

n

n
=

=

∞

∑

euler(n)

euler(n,z)

n ≥ 0

t < 
2

Exponential
integrals Ei n z

e

t
dt

zt

n
(,) =

−∞

∫
1

Ei x PV
e
t

tx

() = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∞
∫

Ei(n,z)

Ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine and
cosine integrals C x t dt

x

() cos= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

S x t dt
x

() sin= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

FresnelC(x)

FresnelS(x)

3-111

3 Using Symbolic Math Toolbox™ Software

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Gamma function
Γ()z t e dtz t= − −

∞

∫ 1

0

GAMMA(z)

Harmonic
function h n

k
n

k

n
() ()= = + +

=
∑ 1

1
1

Ψ γ
harmonic(n) n > 0

Hyperbolic sine
and cosine
integrals

Shi z
t

t
dt

z

()
sinh()= ∫

0

Chi z z
t

t
dt

z

() ln()
cosh()= + + −∫γ 1

0

Shi(z)

Chi(z)

(Generalized)
hypergeometric
function F n d z

n k
n

z

d k
d

k

i

i

k

i

j

i

ii

m
k

(, ,)

()
()

()
()

!

=

+ ⋅

+ ⋅

=

=

=

∞ ∏

∏
∑

Γ
Γ

Γ
Γ

1

1

0

where j and m are the number of terms
in n and d, respectively.

hypergeom(n,d,x)

where

n = [n1,n2,...]

d = [d1,d2,...]

n1,n2,... are
real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic integrals

Legendre’s incomplete elliptic
integrals of the first, second, and third
kind. This definition uses modulus k.
The numerical ellipke function and
the MuPAD functions for computing
elliptic integrals use the parameter

m k= =2 2sin  .

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

0 < x ≤ ∞.

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Incomplete
gamma function Γ(,)a z e t dtt a

z

= ⋅− −
∞

∫ 1
GAMMA(z1,z2)

z1 = a
z2 = z

3-112

Special Functions of Applied Mathematics

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Logarithm of the
gamma function

lnGAMMA() ln(())z z= Γ lnGAMMA(z)

Logarithmic
integral Li x PV

dt
t

Ei x
x

()
ln

(ln)=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=∫

0

Li(x) x > 1

Polygamma
function Ψ Ψ() () ()n

n
z

d
dz

z=

where Ψ()z is the Digamma function.

Psi(n,z) n ≥ 0

Shifted sine
integral Ssi z Si z() ()= − 

2

Ssi(z)

The following orthogonal polynomials are available using mfun. In all cases, n
is a nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

Gegenbauer G(n,a,x) a is a nonrational algebraic
expression or a rational
number greater than -1/2.

Hermite H(n,x)

Jacobi P(n,a,b,x) a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x)

3-113

3 Using Symbolic Math Toolbox™ Software

Orthogonal Polynomials (Continued)

Polynomial mfun Name Arguments

Generalized Laguerre L(n,a,x) a is a nonrational algebraic
expression or a rational
number greater than -1.

Legendre P(n,x)

Diffraction Example
This example is from diffraction theory in classical electrodynamics. (J.D.
Jackson, Classical Electrodynamics, John Wiley & Sons, 1962).

Suppose you have a plane wave of intensity I0 and wave number k. Assume
that the plane wave is parallel to the xy-plane and travels along the z-axis
as shown below. This plane wave is called the incident wave. A perfectly
conducting flat diffraction screen occupies half of the xy-plane, that is x < 0.
The plane wave strikes the diffraction screen, and you observe the diffracted
wave from the line whose coordinates are (x, 0, z0), where z0 > 0.

3-114

Special Functions of Applied Mathematics

The intensity of the diffracted wave is given by

I
I

C S= () +⎛
⎝⎜

⎞
⎠⎟
+ () +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥0

2 2

2
1
2

1
2

  ,

where

 = ⋅k
z

x
2 0

,

and C() and S() are the Fresnel cosine and sine integrals:

C t dt
() = ⎛
⎝⎜

⎞
⎠⎟∫ cos

0
2

2

S t dt
() = ⎛
⎝⎜

⎞
⎠⎟∫ sin .

2
2

0

3-115

3 Using Symbolic Math Toolbox™ Software

How does the intensity of the diffracted wave behave along the line of
observation? Since k and z0 are constants independent of x, you set

k
z2

1
0
= ,

and assume an initial intensity of I0 = 1 for simplicity.

The following code generates a plot of intensity as a function of x:

x = -50:50;
C = mfun('FresnelC',x);
S = mfun('FresnelS',x);
I0 = 1;
T = (C+1/2).^2 + (S+1/2).^2;
I = (I0/2)*T;
plot(x,I);
xlabel('x');
ylabel('I(x)');
title('Intensity of Diffracted Wave');

−50 0 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

Intensity of Diffracted Wave

3-116

Special Functions of Applied Mathematics

You see from the graph that the diffraction effect is most prominent near the
edge of the diffraction screen (x = 0), as you expect.

Note that values of x that are large and positive correspond to observation
points far away from the screen. Here, you would expect the screen to have
no effect on the incident wave. That is, the intensity of the diffracted wave
should be the same as that of the incident wave. Similarly, x values that are
large and negative correspond to observation points under the screen that are
far away from the screen edge. Here, you would expect the diffracted wave to
have zero intensity. These results can be verified by setting

x = [Inf -Inf]

in the code to calculate I.

3-117

3 Using Symbolic Math Toolbox™ Software

Using Graphics

In this section...

“Creating Plots” on page 3-118

“Exploring Function Plots” on page 3-129

“Editing Graphs” on page 3-131

“Saving Graphs” on page 3-132

Creating Plots

Using Symbolic Plotting Functions
MATLAB provides a wide variety of techniques for plotting numerical data.
Graphical capabilities of MATLAB include plotting tools, standard plotting
functions, graphic manipulation and data exploration tools, and tools for
printing and exporting graphics to standard formats. The Symbolic Math
Toolbox features expand the graphic capabilities of MATLAB and enable
you to plot symbolic functions. The toolbox provides the following plotting
functions:

• ezplot that creates 2-D plots of explicit and implicit symbolic functions in
Cartesian coordinates.

• ezplot3 that creates 3-D parametric function plots. The animate option of
ezplot3 lets you create animated function plots.

• ezpolar that creates symbolic function plots in polar coordinates.

• ezsurf that creates surface plots of symbolic functions. The ezsurfc
plotting function creates combined surface and contour function plots.

• ezcontour that creates contour plots of symbolic functions. The
ezcontourf function creates filled contour plots.

• ezmesh that creates mesh plots of symbolic functions. The ezmeshc function
creates combined mesh and contour function plots.

For example, plot the symbolic function sin(6x) in Cartesian coordinates.
By default, ezplot uses the range –2π < x < 2π :

3-118

Using Graphics

syms x;
ezplot(sin(6*x))

When plotting a symbolic function, ezplot uses the default 60-by-60 grid
(mesh setting). The plotting function does not adapt the mesh setting around
steep parts of a function plot or around singularities. (These parts are
typically less smooth than the rest of a function plot.) Also, ezplot does not
allow you to change the mesh setting.

To plot a symbolic function in polar coordinates r (radius) and θ (polar angle),
use the ezpolar plotting function. By default, ezpolar plots a symbolic
function over the domain 0 < θ < 2π . For example, plot the function sin(6t)
in polar coordinates:

3-119

3 Using Symbolic Math Toolbox™ Software

syms t;
ezpolar(sin(6*t))

Using MATLAB Plotting Functions
When plotting a symbolic expression, you also can use the plotting functions
provided by MATLAB. For example, plot the symbolic expression ex/2 sin(10x).
First, use matlabFunction to convert the symbolic expression to a MATLAB
function. The result is a function handle h that points to the resulting
MATLAB function:

syms x;
h = matlabFunction(exp(x/2)*sin(10*x))

3-120

Using Graphics

Now, plot the resulting MATLAB function by using one of the standard
plotting functions that accept function handles as arguments. For example,
use the fplot function:

fplot(h, [0 10]);
hold on;
title('exp(x/2)*sin(10*x)');
hold off

An alternative approach is to replace symbolic variables in an expression with
numeric values by using the subs function. For example, in the following
expressions u and v, substitute the symbolic variables x and y with the
numeric values defined by meshgrid:

syms x y

3-121

3 Using Symbolic Math Toolbox™ Software

u = sin(x^2 + y^2); v = cos(x*y);
[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
U = subs(u, [x y], {X,Y}); V = subs(v, [x y], {X,Y});

Now, you can use standard MATLAB plotting functions to plot the expressions
U and V. For example, create the plot of a vector field defined by the functions
U(X, Y) and V(X, Y):

quiver(X, Y, U, V)

Plotting Multiple Symbolic Functions in One Graph
To plot several symbolic functions in one graph, add them to the graph
sequentially. To be able to add a new function plot to the graph that already
contains a function plot, use the hold on command. This command retains
the first function plot in the graph. Without this command, the system

3-122

Using Graphics

replaces the existing plot with the new one. Now, add new plots. Each
new plot appears on top of the existing plots. While you use the hold on
command, you also can change the elements of the graph (such as colors,
line styles, line widths, titles) or add new elements. When you finish adding
new function plots to a graph and modifying the graph elements, enter the
hold off command:

syms x y;
ezplot(exp(x)*sin(20*x) - y, [0, 3, -20, 20]);
hold on;
p1 = ezplot(exp(x) - y, [0, 3, -20, 20]);
set(p1,'Color','red', 'LineStyle', '--', 'LineWidth', 2);
p2 = ezplot(-exp(x) - y, [0, 3, -20, 20]);
set(p2,'Color','red', 'LineStyle', '--', 'LineWidth', 2);
title('exp(x)sin(20x)');
hold off

3-123

3 Using Symbolic Math Toolbox™ Software

Plotting Multiple Symbolic Functions in One Figure
To display several function plots in one figure without overlapping, divide a
figure window into several rectangular panes (tiles). Then, you can display
each function plot in its own pane. For example, you can assign different
values to symbolic parameters of a function, and plot the function for each
value of a parameter. Collecting such plots in one figure can help you compare
the plots. To display multiple plots in the same window, use the subplot
command:

subplot(m,n,p)

This command partitions the figure window into an m-by-n matrix of small
subplots and selects the subplot p for the current plot. MATLAB numbers the

3-124

Using Graphics

subplots along the first row of the figure window, then the second row, and so
on. For example, plot the expression sin(x^2 + y^2)/a for the following four
values of the symbolic parameter a:

syms x y;
z = x^2 + y^2;
subplot(2, 2, 1); ezsurf(sin(z/100));
subplot(2, 2, 2); ezsurf(sin(z/50));
subplot(2, 2, 3); ezsurf(sin(z/20));
subplot(2, 2, 4); ezsurf(sin(z/10));

Combining Symbolic Function Plots and Numeric Data Plots
The combined graphical capabilities of MATLAB and the Symbolic Math
Toolbox software let you plot numeric data and symbolic functions in one

3-125

3 Using Symbolic Math Toolbox™ Software

graph. Suppose, you have two discrete data sets, x and y. Use the scatter
plotting function to plot these data sets as a collection of points with
coordinates (x1, y1), (x2, y2), ..., (x3, y3):

x = 0:pi/10:4*pi;
y = sin(x) + (-1).^randi(10, 1, 41).*rand(1, 41)./2;
scatter(x, y)

Now, suppose you want to plot the sine function on top of the scatter plot in the
same graph. First, use the hold on command to retain the current plot in the
figure. (Without this command, the symbolic plot that you are about to create
replaces the numeric data plot.) Then, use ezplot to plot the sine function.
By default, MATLAB does not use a different color for a new function; the sine
function appears in blue. To change the color or any other property of the plot,
create the handle for the ezplot function call, and then use the set function:

3-126

Using Graphics

hold on;
syms t;
p = ezplot(sin(t), [0 4*pi]);
set(p,'Color','red');

MATLAB provides the plotting functions that simplify the process of
generating spheres, cylinders, ellipsoids, and so on. The Symbolic Math
Toolbox software lets you create a symbolic function plot in the same graph
with these volumes. For example, use the following commands to generate
the spiral function plot wrapped around the top hemisphere. The animate
option switches the ezplot3 function to animation mode. The red dot on the
resulting graph moves along the spiral:

syms t;

3-127

3 Using Symbolic Math Toolbox™ Software

x = (1-t)*sin(100*t);
y = (1-t)*cos(100*t);
z = sqrt(1 - x^2 - y^2);
ezplot3(x, y, z, [0 1], 'animate');
title('Symbolic Parametric Plot');

Add the sphere with radius 1 and the center at (0, 0, 0) to this graph. The
sphere function generates the required sphere, and the mesh function creates
a mesh plot for that sphere. Combining the plots clearly shows that the
symbolic parametric function plot is wrapped around the top hemisphere:

hold on;
[X,Y,Z] = sphere;
mesh(X, Y, Z);

3-128

Using Graphics

colormap(gray);
title('Symbolic Parametric Plot and a Sphere');

Exploring Function Plots
Plotting a symbolic function can help you visualize and explore the features
of the function. Graphical representation of a symbolic function can also
help you communicate your ideas or results. MATLAB displays a graph in a
special window called a figure window. This window provides interactive tools
for further exploration of a function or data plot.

3-129

3 Using Symbolic Math Toolbox™ Software

Interactive data exploration tools are available in the figure toolbar and also
from the Tools menu. By default, a figure window displays one toolbar that
provides shortcuts to the most common operations. You can enable two other
toolbars from the View menu. When exploring symbolic function plots, use
the same operations as you would for the numeric data plots. For example:

3-130

Using Graphics

• Zoom in and out on particular parts of a graph (). Zooming allows
you to see small features of a function plot. Zooming behaves differently for
2-D or 3-D views. For more information, see “Enlarging the View”.

• Shift the view of the graph with the pan tool (). Panning is useful when
you have zoomed in on a graph and want to move around the plot to view
different portions. For more information, see “Panning — Shifting Your
View of the Graph”.

• Rotate 3-D graphs (). Rotating 3-D graphs allows you to see more
features of the surface and mesh function plots. For more information, see
“Rotate 3D — Interactive Rotation of 3-D Views”.

• Display particular data values on a graph and export them to MATLAB

workspace variables (). For more information, see “Data Cursor —
Displaying Data Values Interactively”.

For more information about data exploration tools available in MATLAB, see
“Ways to Explore Graphical Data”.

Editing Graphs
MATLAB supports the following two approaches for editing graphs:

• Interactive editing lets you use the mouse to select and edit objects on
a graph.

• Command-line editing lets you use MATLAB commands to edit graphs.

These approaches work for graphs that display numeric data plots, symbolic
function plots, or combined plots.

To enable the interactive plot editing mode in the MATLAB figure window,

click the Edit Plot button () or select Tools > Edit Plot from the main
menu. If you enable plot editing mode in the MATLAB figure window, you
can perform point-and-click editing of your graph. In this mode, you can
modify the appearance of a graphics object by double-clicking the object and

3-131

3 Using Symbolic Math Toolbox™ Software

changing the values of its properties. For more information about interactive
editing, see “Working in Plot Edit Mode”.

The complete collection of properties is accessible through a graphical user
interface called the Property Editor. To open a graph in the Property Editor
window:

1 Enable plot editing mode in the MATLAB figure window.

2 Double-click any element on the graph.

For information about editing object properties in plot editing mode, see “The
Property Editor”.

If you prefer to work from the MATLAB command line or if you want to
create a code file, you can edit graphs by using MATLAB commands. For
information about command-line graph editing, see “Understanding Handle
Graphics® Objects”.

Also, you can combine the interactive and command-line editing approaches
to achieve the look you want for the graphs you create.

Saving Graphs
After you create, edit, and explore a function plot, you might want to save the
result. MATLAB provides three different ways to save graphs:

• Save a graph as a MATLAB FIG-file (a binary format). The FIG-file
stores all information about a graph, including function plots, graph
data, annotations, data tips, menus and other controls. You can open the
FIG-file only with MATLAB. For more information, see “Saving a Graph
in FIG-File Format”.

• Export a graph to a different file format. When saving a graph, you can
choose a file format other than FIG. For example, you can export your
graphs to EPS, JPEG, PNG, BMP, TIFF, PDF, and other file formats.
You can open the exported file in an appropriate application. For more
information, see “Saving to a Different Format — Exporting Figures”.

3-132

Using Graphics

• Print a graph on paper or print it to file. To ensure the correct plot size,
position, alignment, paper size and orientation, use Print Preview. For
more information, see “Printing Figures”.

• Generate a MATLAB file from a graph. You can use the generated code to
reproduce the same graph or create a similar graph using different data.
This approach is useful for generating MATLAB code for work that you
have performed interactively with the plotting tools. For more information,
see “Generating a MATLAB File to Recreate a Graph”.

3-133

3 Using Symbolic Math Toolbox™ Software

Generating Code from Symbolic Expressions

In this section...

“Generating C or Fortran Code” on page 3-134

“Generating MATLAB Functions” on page 3-135

“Generating MATLAB Function Blocks” on page 3-140

“Generating Simscape Equations” on page 3-144

Generating C or Fortran Code
You can generate C or Fortran code fragments from a symbolic expression,
or generate files containing code fragments, using the ccode and fortran
functions. These code fragments calculate numerical values as if substituting
numbers for variables in the symbolic expression.

To generate code from a symbolic expression g, enter either ccode(g) or
fortran(g).

For example:

syms x y
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
fortran(z)

ans =
t0 = (x**4*3.0D1)/(x*y**2+1.0D1)-x**3*(y**2+1.0D0)**2

ccode(z)

ans =
t0 =

((x*x*x*x)*3.0E1)/(x*(y*y)+1.0E1)-(x*x*x)*pow(y*y+1.0,2.0);

To generate a file containing code, either enter ccode(g,'file','filename')
or fortran(g,'file','filename'). For the example above,

fortran(z, 'file', 'fortrantest')

3-134

Generating Code from Symbolic Expressions

generates a file named fortrantest in the current folder. fortrantest
consists of the following:

t12 = x**2
t13 = y**2
t14 = t13+1
t0 = (t12**2*30)/(t13*x+10)-t12*t14**2*x

Similarly, the command

ccode(z,'file','ccodetest')

generates a file named ccodetest that consists of the lines

t16 = x*x;
t17 = y*y;
t18 = t17+1.0;
t0 = ((t16*t16)*3.0E1)/(t17*x+1.0E1)-t16*(t18*t18)*x;

ccode and fortran generate many intermediate variables. This is called
optimized code. MATLAB generates intermediate variables as a lowercase
letter t followed by an automatically generated number, for example t32.
Intermediate variables can make the resulting code more efficient by reusing
intermediate expressions (such as t12 in fortrantest, and t16 in ccodetest).
They can also make the code easier to read by keeping expressions short.

If you work in the MuPAD notebook interface, see the generate::C and
generate::fortran function help pages in the MuPAD documentation.

Generating MATLAB Functions
You can use matlabFunction to generate a MATLAB function handle that
calculates numerical values as if you were substituting numbers for variables
in a symbolic expression. Also, matlabFunction can create a file that
accepts numeric arguments and evaluates the symbolic expression applied
to the arguments. The generated file is available for use in any MATLAB
calculation, whether or not the computer running the file has a license for
Symbolic Math Toolbox functions.

If you work in the MuPAD notebook interface, see “Creating MATLAB
Functions from MuPAD Expressions” on page 4-56.

3-135

3 Using Symbolic Math Toolbox™ Software

Generating a Function Handle
matlabFunction can generate a function handle from any symbolic
expression. For example:

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(tanh(r))

ht =
@(x,y)tanh(sqrt(x.^2+y.^2))

You can use this function handle to calculate numerically:

ht(.5,.5)

ans =
0.6089

You can pass the usual MATLAB double-precision numbers or matrices to
the function handle. For example:

cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)

ans =
0.6089 0.9954

Controlling the Order of Variables
matlabFunction generates input variables in alphabetical order from a
symbolic expression. That is why the function handle in “Generating a
Function Handle” on page 3-136 has x before y:

ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))

You can specify the order of input variables in the function handle using
the vars option. You specify the order by passing a cell array of strings or
symbolic arrays, or a vector of symbolic variables. For example:

syms x y z
r = sqrt(x^2 + 3*y^2 + 5*z^2);

3-136

Generating Code from Symbolic Expressions

ht1 = matlabFunction(tanh(r), 'vars', [y x z])

ht1 =
@(y,x,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})

ht2 =
@(x,y,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})

ht3 =
@(x,in2)tanh(sqrt(x.^2+in2(:,1).^2.*3.0+in2(:,2).^2.*5.0))

Generating a File
You can generate a file from a symbolic expression, in addition to a function
handle. Specify the file name using the file option. Pass a string containing
the file name or the path to the file. If you do not specify the path to the file,
matlabFunction creates this file in the current folder.

This example generates a file that calculates the value of the symbolic matrix
F for double-precision inputs t, x, and y:

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m')

The file testMatrix.m contains the following code:

function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)

t2 = x.^2;
t3 = tan(y);
t4 = t2.*x;
t5 = t.^2;
t6 = t5 + 1;

3-137

3 Using Symbolic Math Toolbox™ Software

t7 = 1./y;
t8 = t6.*t7.*x;
t9 = t3 + t4;
t10 = 1./t9;
F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];

matlabFunction generates many intermediate variables. This is called
optimized code. MATLAB generates intermediate variables as a lowercase
letter t followed by an automatically generated number, for example t32.
Intermediate variables can make the resulting code more efficient by reusing
intermediate expressions (such as t4, t6, t8, t9, and t10 in the calculation of
F). Using intermediate variables can make the code easier to read by keeping
expressions short.

If you don’t want the default alphabetical order of input variables, use the
vars option to control the order. Continuing the example,

matlabFunction(F,'file','testMatrix.m','vars',[x y t])

generates a file equivalent to the previous one, with a different order of inputs:

function F = testMatrix(x,y,t)
...

Naming Output Variables
By default, the names of the output variables coincide with the names you
use calling matlabFunction. For example, if you call matlabFunction with
the variable F

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m','vars',[x y t])

the generated name of an output variable is also F:

function F = testMatrix(x,y,t)
...

If you call matlabFunction using an expression instead of individual variables

3-138

Generating Code from Symbolic Expressions

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(w + z + F,'file','testMatrix.m',...
'vars',[x y t])

the default names of output variables consist of the word out followed by the
number, for example:

function out1 = testMatrix(x,y,t)
...

To customize the names of output variables, use the output option:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function',...
'outputs', {'name1','name2'})

The generated function returns name1 and name2 as results:

function [name1,name2] = new_function(x,y,z)
...

Converting MuPAD Expressions
You can convert a MuPAD expression or function to a MATLAB function:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'new_function');

The created file contains the same expressions written in the MATLAB
language:

function f = new_function(x,y)
%NEW_FUNCTION
% F = NEW_FUNCTION(X,Y)

f = asin(x) + acos(y);

3-139

3 Using Symbolic Math Toolbox™ Software

Tip matlabFunction cannot correctly convert some MuPAD expressions to
MATLAB functions. These expressions do not trigger an error message. When
converting a MuPAD expression or function that is not on the MATLAB vs.
MuPAD Expressions list, always check the results of conversion. To verify the
results, execute the resulting function.

Generating MATLAB Function Blocks
Using emlBlock, you can generate a MATLAB Function block. The generated
block is available for use in Simulink® models, whether or not the computer
running the simulations has a license for Symbolic Math Toolbox.

If you work in the MuPAD notebook interface, see “Creating MATLAB
Function Blocks from MuPAD Expressions” on page 4-59.

Generating and Editing a Block
Suppose, you want to create a model involving the van der Pol equation.
Before you can convert a symbolic expression to a MATLAB Function block,
create an empty model or open an existing one:

new_system('my_system');
open_system('my_system');

Create a symbolic expression and pass it to the emlBlock command. Also
specify the block name:

syms x y;
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
emlBlock('my_system/vdp', dydt);

If you use the name of an existing block, the emlBlock command replaces the
definition of an existing block with the converted symbolic expression.

3-140

Generating Code from Symbolic Expressions

The model my_system contains the generated block.

3-141

3 Using Symbolic Math Toolbox™ Software

Add other Simulink blocks and wiring to properly define the system.

You can open and edit the generated block. To open a block, select
Edit > Open Block or use the context menu.

Controlling the Order of Input Ports
emlBlock generates input variables and the corresponding input ports in
alphabetical order from a symbolic expression. To change the order of input
variables, use the vars option:

syms x y;
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
emlBlock('my_system/vdp', dydt,...
'vars', [y mu x]);

3-142

Generating Code from Symbolic Expressions

Naming the Output Ports
By default, emlBlock generates the names of the output ports as the word out
followed by the output port number, for example, out3. The output option
allows you to use the custom names of the output ports:

syms x y;
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
emlBlock('my_system/vdp', dydt,...
'outputs',{'name1'});

Converting MuPAD Expressions
You can convert a MuPAD expression or function to a MATLAB Function
block:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
emlBlock('my_system/my_block', f);

The resulting block contains the same expressions written in the MATLAB
language:

function f = my_block(x,y)
%#codegen

f = asin(x) + acos(y);

Tip Some MuPAD expressions cannot be correctly converted to a block. These
expressions do not trigger an error message. When converting a MuPAD
expression or function that is not on the MATLAB vs. MuPAD Expressions
list, always check the results of conversion. To verify the results, you can:

• Run the simulation containing the resulting block.

• Open the block and verify that all the functions are defined in MATLAB
Function Library Reference.

3-143

http://www.mathworks.com/help/toolbox/eml/ug/bq1h2z7-9.html
http://www.mathworks.com/help/toolbox/eml/ug/bq1h2z7-9.html

3 Using Symbolic Math Toolbox™ Software

Generating Simscape Equations
Simscape™ software extends the Simulink product line with tools for
modeling and simulating multidomain physical systems, such as those with
mechanical, hydraulic, pneumatic, thermal, and electrical components.
Unlike other Simulink blocks, which represent mathematical operations
or operate on signals, Simscape blocks represent physical components or
relationships directly. With Simscape blocks, you build a model of a system
just as you would assemble a physical system. For more information about
Simscape software see www.mathworks.com/products/simscape/.

You can extend the Simscape modeling environment by creating custom
components. When you define a component, use the equation section of
the component file to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time, and the time
derivatives of each of these entities. The Symbolic Math Toolbox and
Simscape software let you perform symbolic computations and use the results
of these computations in the equation section. The simscapeEquation
function translates the results of symbolic computations to Simscape language
equations.

If you work in the MuPAD notebook interface, see “Creating Simscape
Equations from MuPAD Expressions” on page 4-61.

Converting Algebraic and Differential Equations
Suppose, you want to generate a Simscape equation from the solution of
the following ordinary differential equation. As a first step, use the dsolve
function to solve the equation:

s = dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0');
s = simplify(s)

The solution is:

s =
cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the
Simscape language:

simscapeEquation(s)

3-144

http://www.mathworks.com/products/simscape/

Generating Code from Symbolic Expressions

simscapeEquation generates the following code:

ans =
s == cos(a*time);

The variable time replaces all instances of the variable t except for derivatives
with respect to t. To use the generated equation, copy the equation and paste
it to the equation section of the Simscape component file. Do not copy the
automatically generated variable ans and the equal sign that follows it.

simscapeEquation converts any derivative with respect to the variable t to
the Simscape notation, X.der, where X is the time-dependent variable. For
example, convert the following differential equation to a Simscape equation.
Also, here you explicitly specify the left and the right sides of the equation by
using the syntax simscapeEquation(LHS, RHS):

syms a;
x = sym('x(t)');
simscapeEquation(diff(x), -a^2*x)

ans =
x.der == -a^2*x;

simscapeEquation also translates piecewise expressions to the Simscape
language. For example, the result of the following Fourier transform is a
piecewise function:

syms v u;
syms x real;
f = exp(-x^2*abs(v))*sin(v)/v;
s = fourier(f, v, u)

s =
piecewise([x <> 0, atan((u + 1)/x^2) - atan((u - 1)/x^2)])

From this symbolic piecewise equation, simscapeEquation generates valid
code for the equation section of a Simscape component file:

simscapeEquation(s)

ans =
s == if (x ~= 0.0),

3-145

3 Using Symbolic Math Toolbox™ Software

-atan(1.0/x^2*(u-1.0))+atan(1.0/x^2*(u+1.0));
else

NaN;
end;

Clear the assumption that x is real:

syms x clear

Converting MuPAD Equations
If you perform symbolic computations in the MuPAD Notebook Interface
and want to convert the results to Simscape equations, use the
generate::Simscape function in MuPAD.

Limitations
The equation section of a Simscape component file supports a limited number
of functions. See the list of Supported Functions for more information. If
a symbolic equation contains the functions that the equation section of
a Simscape component file does not support. simscapeEquation cannot
correctly convert these equations to Simscape equations. Such expressions do
not trigger an error message. The following types of expressions are prone
to invalid conversion:

• Expressions with infinities

• Expressions returned by evalin and feval

3-146

http://www.mathworks.com/help/toolbox/physmod/simscape/lang/equations.html#brtts6o

4

MuPAD in Symbolic Math
Toolbox

• “Understanding MuPAD” on page 4-2

• “MuPAD for MATLAB Users” on page 4-10

• “Integration of MuPAD and MATLAB” on page 4-28

• “Integrating Symbolic Computations in Other Toolboxes and Simulink”
on page 4-56

4 MuPAD® in Symbolic Math Toolbox™

Understanding MuPAD

In this section...

“Introduction to MuPAD” on page 4-2

“MuPAD Engines and MATLAB Workspace” on page 4-2

“Introductory Example Using a MuPAD Notebook from MATLAB” on page
4-3

Introduction to MuPAD
Starting with Version 4.9, Symbolic Math Toolbox is powered by the MuPAD
symbolic engine.

• MuPAD notebooks provide an additional interface for performing symbolic
calculations, variable-precision calculations, plotting, and animations.
“Introductory Example Using a MuPAD Notebook from MATLAB” on page
4-3 shows how to use this interface.

• Symbolic Math Toolbox functions let you copy variables and expressions
between the MATLAB workspace and MuPAD notebooks. For details, see
“Copying Variables and Expressions Between the MATLAB Workspace and
MuPAD Notebooks” on page 4-32.

• You can call MuPAD functions and procedures, including custom
procedures, from the MATLAB environment. For details, see “Calling
Built-In MuPAD Functions from the MATLAB Command Window” on
page 4-40.

• You can convert the results of symbolic computations into MATLAB
functions, Simulink blocks, or use them in equation sections when building
new components in Simscape.

MuPAD Engines and MATLAB Workspace
A MuPAD engine is a separate process that runs on your computer in
addition to a MATLAB process. A MuPAD engine starts when you first call a
function that needs a symbolic engine, such as syms. Symbolic Math Toolbox
functions that use the symbolic engine use standard MATLAB syntax, such
as y = int(x^2).

4-2

Understanding MuPAD®

Conceptually, each MuPAD notebook has its own symbolic engine, with an
associated workspace. You can have any number of MuPAD notebooks open
simultaneously.

���������������������������
����������������������

������� !"��������#�����
���������$���������

�!�%!&�$��#�'��� �� !"��������#�(�� !"��������#�

�� !"�������

��������

�� !"�������

�������	

�� !"�������

�������

������
)��#�'���

������
)��#�'���

������
)��#�'���

The engine workspace associated with the MATLAB workspace is generally
empty, except for assumptions you make about variables. For details, see
“Clearing Assumptions and Resetting the Symbolic Engine” on page 4-51.

Introductory Example Using a MuPAD Notebook
from MATLAB
This example shows how to use a MuPAD notebook to calculate symbolically
the mean and variance of a normal random variable that is restricted to
be positive. For details on using a MuPAD notebook, see “Calculating in
a MuPAD Notebook” on page 4-14.

The density function of the normal and positive random variable is

f x e xx
() //

= >⎧
⎨
⎪

⎩⎪

− 2 2 2 0
0

 if
otherwise.

4-3

4 MuPAD® in Symbolic Math Toolbox™

1 At the MATLAB command line, enter the command

mupad

A blank MuPAD notebook opens.

2 Type commands in the input area, indicated by a left bracket. For example,
type the following commands and press Enter:

4-4

Understanding MuPAD®

f := exp(-x^2/2)*sqrt(2/PI)

Note Assignment in a MuPAD notebook uses :=, not the MATLAB syntax
=. Also, the MuPAD syntax for the mathematical constant π is PI, not the
MATLAB syntax pi. For more information on common syntax differences,
see “Differences Between MATLAB and MuPAD Syntax” on page 4-28.

The MuPAD notebook displays results in real math notation. For example,
now your notebook appears as follows.

3 The mean of the random variable is

mean = ⋅
∞

∫ x f dx
0

.

To calculate the mean of the random variable:

a Type

mean :=

4-5

4 MuPAD® in Symbolic Math Toolbox™

b To place an integral in the correct syntax, click the integral button in the
Command Bar (by default, it appears on the right), and select definite
limits as shown.

The correct syntax for integration appears in the input area.

c Press Tab to select the replaceable fields #f, #x, and so on. Press
Ctrl+space bar to autocomplete inputs. For example, type infi and
press Ctrl+space bar to enter infinity.

d Replace #f with x*f, #x with x, #a with 0, and #b with infinity.

e Press Enter when your input area reads:

mean := int(x*f, x = 0..infinity)

4-6

Understanding MuPAD®

Note The syntax for integration and infinity differ from the MATLAB
versions.

4 The variance of the random variable is

variance mean= −() ⋅
∞

∫ x f dx2

0

.

To calculate the variance of the random variable, type the following
command and press Enter:

variance := int((x - mean)^2*f, x = 0..infinity)

4-7

4 MuPAD® in Symbolic Math Toolbox™

5 The result of evaluating variance is a complicated expression. Try to
simplify it using the simplify command:

simplify(variance)

The result is indeed simpler:

6 Another expression for the variance of the random variable is

variance mean= ⋅ −
∞

∫ x f dx2

0

2.

To calculate the variance of the random variable using this definition, type
the following command and press Enter:

variance2 := int(x^2*f, x = 0..infinity) - mean^2

The two expressions for variance, variance and variance2, are obviously
equivalent.

4-8

Understanding MuPAD®

For details on working in MuPAD notebooks, select Help > Open Help or
press F1 to open the MuPAD Help Browser.

4-9

4 MuPAD® in Symbolic Math Toolbox™

MuPAD for MATLAB Users

In this section...

“Getting Help for MuPAD” on page 4-10

“Creating, Opening, and Saving MuPAD Notebooks” on page 4-11

“Calculating in a MuPAD Notebook” on page 4-14

“Other MuPAD Interfaces: Editor and Debugger” on page 4-21

“Notebook Files and Program Files” on page 4-26

“Source Code of the MuPAD Library Functions” on page 4-27

Getting Help for MuPAD
Extensive online help is available for MuPAD. To access the MuPAD Help
Browser from the MATLAB workspace, use one of the following methods:

• Enter doc(symengine) at the MATLAB Command Window.

4-10

MuPAD® for MATLAB® Users

MuPAD Help contains complete documentation of the MuPAD language.
It also explains how to use MuPAD interfaces, such as notebooks and the
editor.

• For help on a specific MuPAD function, enter
doc(symengine,'functionName') at the MATLAB command line to
display MuPAD Help at the functionName function.

Creating, Opening, and Saving MuPAD Notebooks
To create a new MuPAD notebook from the MATLAB command line, enter

4-11

4 MuPAD® in Symbolic Math Toolbox™

nb = mupad

You can use any variable name instead of nb. This syntax opens a blank
MuPAD notebook.

The variable nb is a handle to the notebook. The toolbox uses this handle
only for communication between the MATLAB workspace and the MuPAD
notebook. Use handles as described in “Copying Variables and Expressions
Between the MATLAB Workspace and MuPAD Notebooks” on page 4-32.

You also can open an existing MuPAD notebook file named file_name from
the MATLAB command line by entering

nb2 = mupad('file_name')

where file_name must be a full path unless the notebook is in the current
folder. This command is useful if you lose the handle to a notebook, in which
case, you can save the notebook file and then reopen it with a fresh handle.

Caution You can lose data when saving a MuPAD notebook. A notebook
saves its inputs and outputs, but not the state of its engine. In particular,
MuPAD does not save variables copied into a notebook using setVar(nb,...).

To open a notebook and automatically jump to a particular location, create
a link target at that location inside a notebook and refer to it when opening
a notebook. For information about creating link targets, see “Formatting
and Exporting MuPAD Documents and Graphics” in the “Getting Started”
chapter of the MuPAD documentation. To refer to a link target when opening
a notebook, enter:

nb2 = mupad('file_name#linktarget_name')

You also can open and save MuPAD notebook files using the usual file system
commands, and by using the MATLAB or MuPAD File menu. However, to
be able to use a handle to a notebook, you must open the notebook using the
mupad command at the MATLAB command line.

4-12

MuPAD® for MATLAB® Users

Tip MuPAD notebook files open in an unevaluated state. In other words, the
notebook is not synchronized with its engine when it opens. To synchronize a
notebook with its engine, select Notebook > Evaluate All. For details, see
“Synchronizing a Notebook and its Engine” on page 4-19.

You also can use the Welcome to MuPAD dialog box to access various MuPAD
interfaces. To open this dialog box, enter:

mupadwelcome

• To access MuPAD Help, click one of the three options in the First Steps
pane.

• To open an existing file, click its name in the Open Recent File pane.

• To open a new notebook, click the New Notebook button.

4-13

4 MuPAD® in Symbolic Math Toolbox™

• To open a new program file in the MuPAD Editor, click the New Editor
button. For information on this interface and its associated debugger, see
“Other MuPAD Interfaces: Editor and Debugger” on page 4-21.

• To open an existing MuPAD notebook or program file, click Open File and
navigate to the file.

Alternatively, you can open the MuPAD welcome dialog box from the
MATLAB Start menu.

Calculating in a MuPAD Notebook

Visual Elements of a Notebook
A MuPAD notebook has the following main components.

4-14

MuPAD® for MATLAB® Users

• Enter commands for execution, evaluation, or plotting in input regions.

• Enter comments in text regions. You can type and format text in a notebook
similar to working in any word processing application.

4-15

4 MuPAD® in Symbolic Math Toolbox™

• Use the Command Bar to help you enter commands into input regions
with the proper syntax.

• Use the Insert menu to add a text area (called Text Paragraph) or input
regions (called Calculation).

• Use the Notebook menu to evaluate expressions in input regions.

Working in a Notebook
The MuPAD notebook interface differs from the MATLAB interface. Things
to remember when working in a MuPAD notebook are:

• Commands typed in an input area are not evaluated until you press Enter.

• You can edit the commands typed in any input area. For example, you can
change a command, correct syntax, or try different values of parameters
simply by selecting the area you want to change and typing over it. Press
Enter to reevaluate the result.

• Results do not automatically cascade or propagate through a notebook, as
described in “Cascading Calculations” on page 4-16.

• The MATLAB method of recalling a previous command by pressing an up
arrow key does not have the same effect in a MuPAD notebook. Instead,
you use arrow keys for navigation in MuPAD notebooks, similar to most
word processors.

Cascading Calculations
If you change a variable in a notebook, the change does not automatically
propagate throughout the notebook. For example, consider the following set
of MuPAD commands:

4-16

MuPAD® for MATLAB® Users

Now change the definition of z in the first line of the notebook from sin(x)
to cos(x) and press Enter:

Only the first line was reevaluated. Therefore y and z are no longer
synchronized. The notebook is in an inconsistent state.

4-17

4 MuPAD® in Symbolic Math Toolbox™

To have the changes cascade to all parts of the notebook, select Notebook
> Evaluate All.

The engine evaluates all the expressions in the notebook from top to bottom,
and the notebook becomes consistent:

4-18

MuPAD® for MATLAB® Users

Synchronizing a Notebook and its Engine
When you open a saved MuPAD notebook file, the notebook display is not
synchronized with its engine. For example, suppose you saved the notebook
pictured in the start of “Cascading Calculations” on page 4-16:

4-19

4 MuPAD® in Symbolic Math Toolbox™

If you open that file and immediately try to work in it without synchronizing
the notebook with its engine, the expressions in the notebook display are
unavailable for calculations. For example, try to calculate u := (1+w)/w:

The variable w has no definition as far as the engine is concerned.

To remedy this situation, select Notebook > Evaluate All. The variable
u changes to reflect the value of w:

4-20

MuPAD® for MATLAB® Users

Other MuPAD Interfaces: Editor and Debugger
Besides the notebook interface, MuPAD provides separate interfaces for
editing and debugging your code.

The MuPAD Editor is an interface for creating and editing your own
procedures. The Editor automatically formats the code and, therefore, helps
you avoid errors, or at least reduce their number. The main techniques are:

• Highlighting the MuPAD syntax elements, such as reserved words (for
example, the names of the built-in functions), strings, comments, and so on

• Automatic indenting

• Using bookmarks to be able to find particular places in the code quickly

The Editor saves files in text format. By default, it uses the extension .mu.
You can specify other extensions, for example, .txt or .tst. The extension
.mu allows the Editor to recognize and open the files. Thus, if you want to
open the files in the Editor later, save them using the extension .mu.

Alternatively, you can create and edit your code in any text editor or in the
MATLAB Editor. Unlike the MATLAB Editor, the MuPAD Editor does not let
you evaluate or debug code.

To open an existing MuPAD file with the extension .mu in the MuPAD Editor,
double-click the file name. To start a new blank program file in the Editor,
open the MuPAD welcome dialog box and click New Editor. For more ways
to open the Editor window, see “Opening MuPAD Interfaces from MATLAB”
on page 4-39.

After opening an existing file or creating a new file in the Editor, you can type
mathematical expressions, commands and text as you would in a notebook.
The Editor automatically highlights and indents your code.

4-21

4 MuPAD® in Symbolic Math Toolbox™

For more information about the MuPAD Editor, see “Using the MuPAD Editor
to Write New Functions” in the MuPAD documentation.

The MuPAD Debugger helps you find run-time errors in your code. This
interface lets you:

• Execute your code step by step.

4-22

MuPAD® for MATLAB® Users

• Set breakpoints, including conditional breakpoints.

• Observe the values of the variables and expressions in each step.

To open the Debugger:

1 Open a new or existing MuPAD notebook. For instructions, see “Creating,
Opening, and Saving MuPAD Notebooks” on page 4-11.

2 In the main menu of a notebook, select Notebook > Debug.

3 In the resulting dialog box, enter the procedure call that you want to debug.

Alternatively, use the debug function in the MuPAD notebook.

4-23

4 MuPAD® in Symbolic Math Toolbox™

4-24

MuPAD® for MATLAB® Users

The default layout of the Debugger window displays four panes:

• The main pane (top-left by default) displays the code that you debug. The
Debugger only shows the code, but does not allow you to update it.

• The Output pane lets you type an expression and evaluate it anytime
during the debugging process.

• The Watch pane shows values of the variables at each step during the
debugging process.

• The Call Stack pane shows the names of the procedures that you debug.

You can close any pane, except for the main pane. If you close a pane, you
can restore it again by selecting View and the name of the required pane.
Using the View menu, you can also open the Breakpoints pane that shows
the list of breakpoints in the code.

You cannot fix bugs directly in the Debugger window. If you work in the
Debugger window and want to edit the code:

1 Open the file with the code in the Editor.

Tip If you did not yet save this code to a program file, display the code in a
new Editor window by selecting File > New Editor with Source.

2 Close the Debugger if it is open.

3 Update the code in the Editor and save it.

4 Open a notebook.

5 In the notebook, select Notebook > Read Commands from the main
menu and navigate to your updated file.

6 Open the Debugger from the notebook.

For details about the MuPAD Debugger, see “Tracing Errors with the MuPAD
Debugger” in the MuPAD documentation.

4-25

4 MuPAD® in Symbolic Math Toolbox™

Notebook Files and Program Files
The two main types of files in MuPAD are:

• Notebook files, or notebooks

• Program files

A notebook file has the extension .mn and lets you store the result of the
work performed in the notebook interface. A notebook file can contain text,
graphics, and any MuPAD commands and their outputs. A notebook file can
also contain procedures and functions.

By default, a notebook file opens in the notebook interface. Creating a new
notebook or opening an existing one does not automatically start the MuPAD
engine. This means that although you can see the results of computations as
they were saved, MuPAD does not remember evaluating them. (The “MuPAD
Workspace” is empty.) You can evaluate any or all commands after opening
a notebook.

A program file is a text file that contains any code snippet that you want to
store separately from other computations. Saving a code snippet as a program
file can be very helpful when you want to use the code in several notebooks.
Typically, a program file contains a single procedure, but it also can contain
one or more procedures or functions, assignments, statements, tests, or any
other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require
the name of that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program
file with the extension .mu. This extension allows the MuPAD Editor to
recognize and open the file later. Nevertheless, a program file is just a text
file. You can save a program file with any extension that you use for regular
text files.

To evaluate the commands from a program file, you must execute a program
file in a notebook. For details about executing program files, see “Reading
MuPAD Procedures” on page 4-49.

4-26

MuPAD® for MATLAB® Users

Source Code of the MuPAD Library Functions
You can display the source code of the MuPAD built-in library functions. If
you work in the MuPAD notebook interface, enter expose(name), where name
is the library function name. The notebook interface displays the code as plain
text with the original line breaks and indentations.

You can also display the code of a MuPAD library function in the MATLAB
Command Window. To do this, use the evalin or feval function to call the
MuPAD expose function:

sprintf(char(feval(symengine, 'expose', 'numlib::tau')))

ans =

proc(a)
name numlib::tau;

begin
if args(0) <> 1 then

error("wrong number of arguments")
else

if not testtype(a, Type::Numeric) then
return(procname(args()))

else
if domtype(a) <> DOM_INT then

error("argument must be an integer")
end_if

end_if
end_if;
numlib::numdivisors(a)

end_proc

MuPAD also includes kernel functions written in C++. You cannot access the
source the code of these functions.

4-27

4 MuPAD® in Symbolic Math Toolbox™

Integration of MuPAD and MATLAB

In this section...

“Differences Between MATLAB and MuPAD Syntax” on page 4-28

“Copying Variables and Expressions Between the MATLAB Workspace and
MuPAD Notebooks” on page 4-32

“Reserved Variable and Function Names” on page 4-35

“Opening MuPAD Interfaces from MATLAB” on page 4-39

“Calling Built-In MuPAD Functions from the MATLAB Command Window”
on page 4-40

“Computing in the MATLAB Command Window vs. the MuPAD Notebook
Interface” on page 4-43

“Using Your Own MuPAD Procedures” on page 4-48

“Clearing Assumptions and Resetting the Symbolic Engine” on page 4-51

Differences Between MATLAB and MuPAD Syntax
There are several differences between MATLAB and MuPAD syntax. Be
aware of which interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions
evalin(symengine,...) and feval(symengine,...), which use MuPAD
syntax.

• Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every
expression entered in a MuPAD notebook is assumed to be a combination of
symbolic variables unless otherwise defined. This means that you must be
especially careful when working in MuPAD notebooks, since fewer of your
typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they
differ in MATLAB and MuPAD syntax.

4-28

Integration of MuPAD® and MATLAB®

Common Tasks in MATLAB and MuPAD Syntax

Task MATLAB Syntax MuPAD Syntax

Assignment = :=

List variables whos anames(All, User)

Numerical value
of expression

double(expression) float(expression)

Suppress output ; :

Enter matrix [x11,x12,x13;
x21,x22,x23]

matrix([[x11,x12,x13],
[x21,x22,x23]])

{a,b,c} cell array set

Linear algebra
commands

Nothing extra needed linalg:: prefix, or
use(linalg)

Autocompletion Tab Ctrl+space bar

Equality,
inequality
comparison

==, ~= =, <>

The next table lists differences between MATLAB expressions and MuPAD
expressions.

MATLAB vs. MuPAD Expressions

MATLAB Expression MuPAD Expression

Inf infinity

pi PI

i I

NaN undefined

fix trunc

log ln

asin arcsin

4-29

4 MuPAD® in Symbolic Math Toolbox™

MATLAB vs. MuPAD Expressions (Continued)

MATLAB Expression MuPAD Expression

acos arccos

atan arctan

asinh arcsinh

acosh arccosh

atanh arctanh

acsc arccsc

asec arcsec

acot arccot

acsch arccsch

asech arcsech

acoth arccoth

besselj besselJ

bessely besselY

besseli besselI

besselk besselK

lambertw lambertW

sinint Si

cosint Ci

eulergamma EULER

conj conjugate

catalan CATALAN

laplace transform::laplace

ilaplace transform::invlaplace

ztrans transform::ztrans

iztrans transform::invztrans

4-30

Integration of MuPAD® and MATLAB®

The MuPAD definition of Fourier transform and inverse Fourier transform
differ from their Symbolic Math Toolbox counterparts by the sign of the
exponent:

Symbolic Math Toolbox
Definition

MuPAD Definition

Fourier
transform

F f w f x e dxiwx   





() () .

Corresponding code is:

F = fourier(f)

F f w f x e dxiwx  




() () .

Corresponding code is:

F := transform::fourier(f,x,w)

Inverse
Fourier
transform F f x f w e dwiwx





   1 1
2

() () .


Corresponding code is:

Finv = ifourier(f)

F f x f w e dwiwx 





   1 1
2

() () .


Corresponding code is:

Finv := transform::invfourier(f,w,x)

The MuPAD definition of exponential integral differs from the Symbolic Math
Toolbox counterpart.

Symbolic Math Toolbox
Definition

MuPAD Definition

Exponential
integral

expint(x) = –Ei(–x) =

exp()− > =
∞

∫ t
t

dt x
x

 for 0

Ei(1, x).

Ei for () .x
e
t

dt x
tx

= <
−∞
∫ 0

Ei(,)
exp()

.n x
xt

t
dt

n
= −∞

∫
1

The definitions of Ei extend
to the complex plane, with
a branch cut along the
negative real axis.

4-31

4 MuPAD® in Symbolic Math Toolbox™

Copying Variables and Expressions Between the
MATLAB Workspace and MuPAD Notebooks
You can copy a variable in a MuPAD notebook to a variable in the MATLAB
workspace using a MATLAB command. Similarly, you can copy a variable
or symbolic expression in the MATLAB workspace to a variable in a MuPAD
notebook using a MATLAB command. To do either assignment, you need to
know the handle to the MuPAD notebook you want to address.

The only way to assign variables between a MuPAD notebook and the
MATLAB workspace is to open the notebook using the following syntax:

nb = mupad;

You can use any variable name for the handle nb. TO open an existing
notebook file, use the following syntax:

nb = mupad(file_name);

Here file_name must be a full path unless the notebook is in the current
folder. The handle nb is used only for communication between the MATLAB
workspace and the MuPAD notebook.

• To copy a symbolic variable in the MATLAB workspace to a variable in
the MuPAD notebook engine with the same name, enter this command in
the MATLAB Command Window:

setVar(notebook_handle,variable)

For example, if nb is the handle to the notebook and z is the variable, enter:

setVar(nb,z)

There is no indication in the MuPAD notebook that variable z exists. Check
that it exists by entering z in an input area of the notebook, or by entering
the command anames(All, User) in the notebook.

• To assign a symbolic expression to a variable in a MuPAD notebook, enter:

setVar(notebook_handle,'variable',expression)

at the MATLAB command line. For example, if nb is the handle to the
notebook, exp(x) - sin(x) is the expression, and z is the variable, enter:

4-32

Integration of MuPAD® and MATLAB®

syms x
setVar(nb,'z',exp(x) - sin(x))

For this type of assignment, x must be a symbolic variable in the MATLAB
workspace.

Again, there is no indication in the MuPAD notebook that variable z exists.
Check that it exists by entering z in an input area of the notebook, or by
entering the command anames(All, User) in the notebook.

• To copy a symbolic variable in a MuPAD notebook to a variable in the
MATLAB workspace, enter in the MATLAB Command Window:

MATLABvar = getVar(notebook_handle,'variable');

For example, if nb is the handle to the notebook, z is the variable in the
MuPAD notebook, and u is the variable in the MATLAB workspace, enter:

u = getVar(nb,'z')

Communication between the MATLAB workspace and the MuPAD
notebook occurs in the notebook’s engine. Therefore, variable z must be
synchronized into the notebook’s MuPAD engine before using getVar, and
not merely displayed in the notebook. If you try to use getVar to copy
an undefined variable z in the MuPAD engine, the resulting MATLAB
variable u is empty. For details, see “Synchronizing a Notebook and its
Engine” on page 4-19.

Tip Do all copying and assignments from the MATLAB workspace, not from
a MuPAD notebook.

4-33

4 MuPAD® in Symbolic Math Toolbox™

�� !"��������#

�� !"
�������#��������!�%!&�$��#�'���

*�	�+
��	�+

���,��-��.�*/

��	����,��-��.�0*1/

2�����!�%!&.�,��������
���������'��3������3�����
���� !"��������#��������

������
��
������

�����

Copying and Pasting Using the System Clipboard
You can also copy and paste between notebooks and the MATLAB workspace
using standard editing commands. If you copy a result in a MuPAD notebook
to the system clipboard, you might get the text associated with the expression,
or a picture, depending on your operating system and application support.

For example, consider this MuPAD expression:

Select the output with the mouse and copy it to the clipboard:

Paste this into the MATLAB workspace. The result is text:

exp(x)/(x^2 + 1)

4-34

Integration of MuPAD® and MATLAB®

If you paste it into Microsoft® WordPad on a Windows® system, the result
is a picture.

Reserved Variable and Function Names
Both MATLAB and MuPAD have their own reserved keywords, such as
function names, special values, and names of mathematical constants. Using
reserved keywords as variable or function names can result in errors. If
a variable name or a function name is a reserved keyword in one or both
interfaces, you can get errors or incorrect results. If you work in one interface
and a name is a reserved keyword in another interface, the error and warning
messages are produced by the interface you work in. These messages can
specify the cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or
function names, especially if you use both interfaces.

Conflicts Caused by MuPAD Function Names
In MuPAD, function names are protected. Normally, the system does not let
you redefine a standard function or use its name as a variable. (To be able
to modify a standard MuPAD function you must first remove its protection.)

4-35

4 MuPAD® in Symbolic Math Toolbox™

Even when you work in the MATLAB Command Window, the MuPAD
engine handles symbolic computations. Therefore, MuPAD function names
are reserved keywords in this case. Using a MuPAD function name while
performing symbolic computations in the MATLAB Command Window can
lead to incorrect results:

solve('D - 10')

The warning message does not indicate the real cause of the problem:

Warning: 1 equations in 0 variables.
Warning: Explicit solution could not be found.
> In solve at 81

ans =
[empty sym]

To fix this issue, use a variable name that is not a reserved keyword:

solve('x - 10')

ans =
10

Alternatively, use the syms function to declare D as a symbolic variable. Then
call the symbolic solver without using quotes:

syms D;
solve(D - 10)

In this case, the toolbox replaces D with some other variable name before
passing the expression to the MuPAD engine:

ans =
10

To list all MuPAD function names, enter this command in the MATLAB
Command Window:

evalin(symengine, 'anames()')

If you work in a MuPAD notebook, enter:

4-36

Integration of MuPAD® and MATLAB®

anames()

Conflicts Caused by Syntax Conversions
Many mathematical functions, constants, and special values use different
syntaxes in MATLAB and MuPAD. See the table MATLAB® vs. MuPAD®

Expressions on page 4-29 for these expressions. When you use such functions,
constants, or special values in the MATLAB Command Window, the toolbox
internally converts the original MATLAB expression to the corresponding
MuPAD expression and passes the converted expression to the MuPAD
engine. When the toolbox gets the results of computations, it converts the
MuPAD expressions in these results to the MATLAB expressions.

Now suppose you write a procedure in MuPAD, and then call it from the
MATLAB Command Window. For example, write this MuPAD procedure
that uses the local variable i:

myProc := proc(n)
local x;
local i;

begin
x := 0:
for i from 0 to n do

x := x + ((-1)^i)/(2*i + 1):
end_for:
x := x*4:

end_proc:

Save the procedure as myProc.mu in the folder C:/MuPAD. Execute it in the
MATLAB Command Window:

eng=symengine;
eng.feval('read',' "C:/MuPAD/myProc.mu" ');

This command results in the following error:

?? Error using ==> mupadengine.mupadengine>mupadengine.feval at 141
Error: Identifier expected (check aliases) [proc];

during evaluation of 'read';

4-37

4 MuPAD® in Symbolic Math Toolbox™

while reading file 'C:/MuPAD/myProc.mu'

In this example, using lowercase i as a variable causes the problem.
Executing procedure myProc in a MuPAD notebook does not cause an error
because MuPAD uses uppercase I to represent an imaginary unit. MATLAB
uses i to represent an imaginary unit, but MATLAB lets you redefine this
variable. (The name i is not protected.)

The problem appears when you try to execute procedure myProc in the
MATLAB Command Window. As with all other symbolic expressions, the
toolbox converts lowercase i to uppercase I, and then passes the converted
expression to the MuPAD engine. This causes an error because I is a protected
function in MuPAD, and the procedure is trying to assign new values to the
protected function. To fix this problem, use another variable name instead of
i. For example, rewrite the procedure using the variable name k:

myProc := proc(n)
local x;
local k;

begin
x := 0:
for k from 0 to n do

x := x + ((-1)^k)/(2*k + 1):
end_for:
x := x*4:

end_proc:

Alternatively, you can use the Plain option as follows:

eng=symengine;
eng.feval('read',' "C:/MuPAD/myProc.mu" ', 'Plain');

Tip If your MuPAD procedure uses the log function to compute the logarithm
to an arbitrary base, use the Plain option. Without this option, the toolbox
treats log as the natural logarithm, and therefore, converts it to ln before
passing the procedure to the MuPAD engine.

4-38

Integration of MuPAD® and MATLAB®

Opening MuPAD Interfaces from MATLAB
You can open an existing MuPAD notebook, a program file with the extension
.mu, a help file with the extension .muphlp, or a graphic file (.xvc or .xvz) by
double-clicking the file name. The system opens the file in the appropriate
interface. Alternatively, use the mupad function in the MATLAB Command
Window and specify the path to the file:

mupad('H:\Documents\Notes\myProc.mu')

If you perform computations in both interfaces, do not forget to use handles
to notebooks. The toolbox uses this handle for communication between the
MATLAB workspace and the MuPAD notebook. If you use the MATLAB
Command Window only to open a notebook, and then perform all your
computations in that notebook, you can skip using a handle. Also, you can
skip using a handle when opening program files, help files, and graphic files.

Symbolic Math Toolbox also provides these functions for opening MuPAD files
in the interfaces with which these files are associated:

• openmn opens a notebook in the notebook interface.

• openmu opens a program file with the extension .mu in the MuPAD Editor.

• openmuphlp opens a help file in the MuPAD Help Browser.

• openxvc opens an XVC graphics file in the MuPAD Graphics window.

• openxvz opens an XVZ graphics file in the MuPAD Graphics window.

These functions accomplish the same task as the mupad function. The system
calls these functions when you double-click the file name.

You also can use the MuPAD welcome dialog box to access MuPAD interfaces.
This dialog box lets you open existing files as well as create new empty
notebooks and program files. To open this dialog box, type mupadwelcome in
the MATLAB Command Window. For details, see “Creating, Opening, and
Saving MuPAD Notebooks” on page 4-11.

Once you open any MuPAD interface, you can use the main menu or the
toolbar in that interface to open other interfaces or additional files. See
“Getting Started” in the MuPAD documentation.

4-39

4 MuPAD® in Symbolic Math Toolbox™

Note You cannot access the MuPAD Debugger interface from the MATLAB
Command Window.

For information about the Debugger, see “Other MuPAD Interfaces: Editor
and Debugger” on page 4-21.

Calling Built-In MuPAD Functions from the MATLAB
Command Window
To access MuPAD functions and procedures at the MATLAB command line,
use evalin(symengine,...) or feval(symengine,...). These functions are
designed to work like the existing MATLAB evalin and feval functions.

Note You cannot use evalin and feval to access the MuPAD function log
that represents the logarithm to an arbitrary base. Instead, both commands
evaluate the natural logarithm.

evalin
For evalin, the syntax is

y = evalin(symengine,'MuPAD_Expression');

Use evalin when you want to perform computations in the MuPAD
language, while working in the MATLAB workspace. For example, to make a
three-element symbolic vector of the sin(kx) function, k = 1 to 3, enter:

y = evalin(symengine,'sin(k*x) $ k = 1..3')

The result is:

y =
sin(x), sin(2*x), sin(3*x)

4-40

Integration of MuPAD® and MATLAB®

feval
For evaluating a MuPAD function, you can also use the feval function. feval
has a different syntax than evalin, so it can be simpler to use. The syntax is:

y = feval(symengine,'MuPAD_Function',x1,...,xn);

MuPAD_Function represents the name of a MuPAD function. The arguments
x1,...,xn must be symbolic variables, numbers, or strings. For example, to
find the tenth element in the Fibonacci sequence, enter:

z = feval(symengine,'numlib::fibonacci',10)

The result is:

z =
55

The next example compares the use of a symbolic solution of an
equation to the solution returned by the MuPAD numeric fsolve
function near the point x = 3. For information on this function, enter
doc(symengine,'numeric::fsolve') at the MATLAB command line. The
symbolic solver

syms x
f = sin(x^2);
solve(f)

returns

ans =
0
0

The numeric solver fsolve

feval(symengine, 'numeric::fsolve',f,'x=3')

returns

ans =
[x = 3.0699801238394654654386548746677946]

4-41

4 MuPAD® in Symbolic Math Toolbox™

As you might expect, the answer is the numerical value of 3 . The setting
of MATLAB format does not affect the display; it is the full returned value
from the MuPAD 'numeric::fsolve' function.

Using evalin vs. feval
The evalin(symengine,...) function causes the MuPAD engine to evaluate
a string. Since the MuPAD engine workspace is generally empty, expressions
returned by evalin(symengine,...) are not simplified or evaluated
according to their definitions in the MATLAB workspace. For example:

syms x
y = x^2;
evalin(symengine, 'cos(y)')

ans =
cos(y)

Variable y is not expressed in terms of x because y is unknown to the MuPAD
engine workspace.

In contrast, feval(symengine,...) can pass symbolic variables that exist
in the MATLAB workspace, and these variables are evaluated before being
processed in the MuPAD engine. For example:

syms x
y = x^2;
feval(symengine,'cos',y)

ans =
cos(x^2)

Floating-Point Arguments of evalin and feval
By default, MuPAD performs all computations in an exact form. When you
call the evalin or feval function with floating-point numbers as arguments,
the toolbox converts these arguments to rational numbers before passing
them to MuPAD. For example, when you calculate the incomplete gamma
function, the result is the following symbolic expression:

y = feval(symengine,'igamma', 0.1, 2.5)

4-42

Integration of MuPAD® and MATLAB®

y =
igamma(1/10, 5/2)

To approximate the result numerically with double precision, use the double
function:

format long;
double(y)

ans =
0.028005841168289

Alternatively, use quotes to prevent the conversion of floating-point
arguments to rational numbers. (The toolbox treats arguments enclosed in
quotes as strings.) When MuPAD performs arithmetic operations on numbers
involving at least one floating-point number, it automatically switches to
numeric computations and returns a floating-point result:

feval(symengine,'igamma', '0.1', 2.5)

ans =
0.028005841168289177028337498391181

For further computations, set the format for displaying outputs back to short:

format short;

Computing in the MATLAB Command Window vs. the
MuPAD Notebook Interface
When computing with Symbolic Math Toolbox, you can choose to work in
the MATLAB Command Window or in the MuPAD notebook interface. The
MuPAD engine that performs all symbolic computations is the same for both
interfaces. The choice of the interface mostly depends on your preferences.

Working in the MATLAB Command Window lets you perform all symbolic
computations using the familiar MATLAB language. The toolbox contains
hundreds of MATLAB symbolic functions for common tasks, such as
differentiation, integration, simplification, transforms, and equation solving.
If your task requires a few specialized symbolic functions not available
directly from this interface, you can use evalin or feval to call MuPAD

4-43

4 MuPAD® in Symbolic Math Toolbox™

functions. See “Calling Built-In MuPAD Functions from the MATLAB
Command Window” on page 4-40.

Working in the MATLAB Command Window is recommended if you use other
toolboxes or MATLAB as a primary tool for your current task and only want
to embed a few symbolic computations in your code.

Working in the MuPAD notebook interface requires you to use the MuPAD
language, which is optimized for symbolic computations. In addition to solving
common mathematical problems, MuPAD functions cover specialized areas,
such as number theory and combinatorics. Also, for some computations the
performance is better in the MuPAD notebook interface than in the MATLAB
Command Window. The reason is that the engine returns the results in the
MuPAD language. To display them in the MATLAB Command Window, the
toolbox translates the results to the MATLAB language.

Working in the MuPAD notebook interface is recommended when your task
mainly consists of symbolic computations. It is also recommended if you want
to document your work and results, for example, embed graphics, animations,
and descriptive text with your calculations. Symbolic results computed in the
MuPAD notebook interface can be accessed from the MATLAB Command
Window, which helps you integrate symbolic results into larger MATLAB
applications.

Learning the MuPAD language and using the MuPAD notebook interface for
your symbolic computations provides the following benefits.

Results Displayed in Typeset Math
By default, the MuPAD notebook interface displays results in typeset math
making them look very similar to what you see in mathematical books. In
addition, the notebook interface

• Uses standard mathematical notations in output expressions.

• Uses abbreviations to make a long output expression with common
subexpressions shorter and easier to read. You can disable abbreviations.

• Wraps long output expressions, including long numbers, fractions and
matrices, to make them fit the page. If you resize the notebook window,

4-44

Integration of MuPAD® and MATLAB®

MuPAD automatically adjusts outputs. You can disable wrapping of output
expressions.

Alternatively, you can display pretty-printed outputs similar to those that
you get in the MATLAB Command Window when you use pretty. You can
also display outputs as plain text. For details, see “Using Different Output
Modes” in the MuPAD documentation.

In a MuPAD notebook, you can copy or move output expressions, including
expressions in typeset math, to any input or text region within the notebook,
or to another notebook. If you copy or move an output expression to an input
region, the expression appears as valid MuPAD input.

Graphics and Animations
The MuPAD notebook interface provides very extensive graphic capabilities
to help you visualize your problem and display results. Here you can create a
wide variety of plots, including:

• 2-D and 3-D plots in Cartesian, polar, and spherical coordinates

• Plots of continuous and piecewise functions and functions with singularities

• Plots of discrete data sets

• Surfaces and volumes by using predefined functions

• Turtle graphics and Lindenmayer systems

• Animated 2-D and 3-D plots

Graphics in the MuPAD notebook interface is interactive. You can explore
and edit plots, for example:

• Change colors, fonts, legends, axes appearance, grid lines, tick marks,
line, and marker styles.

• Zoom and rotate plots without reevaluating them.

• Display coordinates of any point on the plot.

After you create and customize a plot, you can export it to various vector and
bitmap file formats, including EPS, SVG, PDF, PNG, GIF, BMP, TIFF, and

4-45

4 MuPAD® in Symbolic Math Toolbox™

JPEG. The set of the file formats available for exporting graphics from a
MuPAD notebook can be limited by your operating system.

You can export animations as AVI files or as sequences of static images.

More Functionality in Specialized Mathematical Areas
While both MATLAB and MuPAD interfaces provide functions for performing
common mathematical tasks, the notebook interface also provides functions
that cover many specialized areas. For example, MuPAD libraries support
computations in the following areas:

• Combinatorics

• Graph theory

• Gröbner bases

• Linear optimization

• Polynomial algebra

• Number theory

• Statistics

MuPAD libraries also provide large collections of functions for working with
ordinary differential equations, integral and discrete transforms, linear
algebra, and more.

More Options for Common Symbolic Functions
Most functions for performing common mathematical computations are
available in both MATLAB and MuPAD interfaces. For example, you can
solve equations and systems of equations using solve, simplify expressions
using simplify, compute integrals using int, and compute limits using
limit. Note that although the function names are the same, the syntax of the
function calls depends on the interface that you use.

Results of symbolic computations can be very long and complicated, especially
because the toolbox assumes all values to be complex by default. For many
symbolic functions you can use additional parameters and options to help you
limit the number and complexity and also to control the form of returned

4-46

Integration of MuPAD® and MATLAB®

results. For example, solve accepts the Real option that lets you restrict
all symbolic parameters of an equation to real numbers. It also accepts the
VectorFormat option that you can use to get solutions of a system as a set of
vectors.

Typically, the functions available in the notebook interface accept more
options than the analogous functions in the MATLAB Command Window. For
example, in the notebook interface you can use the VectorFormat option. This
option is not directly available for the solve function called in the MATLAB
Command Window.

Possibility to Expand Existing Functionality
The MuPAD programming language supports multiple programming styles,
including imperative, functional, and object-oriented programming. The
system includes a few basic functions written in C++, but the majority
of the MuPAD built-in functionality is implemented as library functions
written in the MuPAD language. You can extend the built-in functionality
by writing custom symbolic functions and libraries, defining new function
environments, data types, and operations on them in the MuPAD language.
MuPAD implements data types as domains (classes). Domains with similar
mathematical structure typically belong to a category. Domains and
categories allow you to use the concepts of inheritance, overloading methods
and operators. The language also uses axioms to state properties of domains
and categories.

“Programming Fundamentals” in the MuPAD documentation contains the
basic information to get you started with object-oriented programming in
MuPAD. For more information, see “Language Extensibility” in the MuPAD
documentation.

MuPAD also lets you load dynamic modules anytime during a MuPAD
session. Dynamic modules consist of machine code compiled from C/C++ code,
and can contain libraries compiled from other programming languages. See
“Dynamic Modules” in the MuPAD documentation.

4-47

4 MuPAD® in Symbolic Math Toolbox™

Using Your Own MuPAD Procedures

Writing MuPAD Procedures
A MuPAD procedure is a text file that you can write in any text editor or in
the MATLAB Editor. The recommended practice is to use the MuPAD Editor.

To define a procedure, use the proc function. Enclose the code in the begin
and end_proc functions:

myProcedure:= proc(n)
begin

if n = 1 or n = 0 then
1

else
n * myProc(n - 1)

end_if;
end_proc:

By default, a MuPAD procedure returns the result of the last executed
command. You can force a procedure to return another result by using return.
In both cases, a procedure returns only one result. To get multiple results from
a procedure, use the print function or data structures inside the procedure.

• If you just want to display the results, and do not need to use them in
further computations, use the print function. With print, your procedure
still returns one result, but prints intermediate results on screen. For
example, this procedure prints the value of its argument in each call:

myProcPrint:= proc(n)
begin

print(n);
if n = 0 or n = 1 then

return(1);
end_if;
n * myProcPrint(n - 1);

end_proc:

• If you want to use multiple results of a procedure, use ordered data
structures, such as lists or matrices as return values. In this case, the
result of the last executed command is technically one object, but it can

4-48

Integration of MuPAD® and MATLAB®

contain more than one value. For example, this procedure returns the
list of two entries:

myProcSort:= proc(a, b)
begin

if a < b then
[a, b]

else
[b, a]

end_if;
end_proc:

Avoid using unordered data structures, such as sequences and sets, to
return multiple results of a procedure. The order of the entries in these
structures can change unpredictably.

When you save the procedure, it is recommended to use the extension .mu.
For details, see “Notebook Files and Program Files” on page 4-26. The name
of the file can differ from the name of the procedure. Also, you can save
multiple procedures in one file.

Before Calling a Procedure
To be able to call a procedure, you must first execute it in a notebook. If you
write a procedure in the same notebook, simply evaluate the input region
that contains the procedure. If you write a procedure in a separate file, you
must read the procedure into a notebook. Reading a procedure means finding
and executing the procedure.

Reading MuPAD Procedures. If you work in the MuPAD notebook
interface and create a separate program file that contains a procedure, use
one of the following methods to execute the procedure in a notebook. The first
approach is to select Notebook > Read Commands from the main menu.

Alternatively, you can use the read function. The function call
read(filename) searches for the program file in this order:

1 Folders specified by the environment variable READPATH

2 filename regarded as an absolute path

4-49

4 MuPAD® in Symbolic Math Toolbox™

3 Current folder (depends on the operating system)

4 Folders specified by the environment variable LIBPATH

If you want to call the procedure from the MATLAB Command Window, you
still need to execute that procedure before calling it. See “Calling Your Own
MuPAD Procedures” on page 4-50.

Using Startup Commands and Scripts. Alternatively, you can add a
MuPAD procedure to startup commands of a particular notebook. This
method lets you execute the procedure every time you start a notebook engine.
Startup commands are executed silently, without any visible outputs in the
notebook. You can copy the procedure to the dialog box that specifies startup
commands or attach the procedure as a startup script. For information, see
“Hiding Code Lines” in the MuPAD documentation.

Calling Your Own MuPAD Procedures
You can extend the functionality available in the toolbox by writing your own
procedures in the MuPAD language. This section explains how to call such
procedures at the MATLAB Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a
nonnegative integer.

4-50

Integration of MuPAD® and MATLAB®

Save the procedure as a file with the extension .mu. For example, save the
procedure as myProcedure.mu in the folder C:/MuPAD.

Now, switch to the MATLAB Command Window. Before calling the procedure
at the MATLAB command line, enter:

eng=symengine;
eng.feval('read',' "C:/MuPAD/myProcedure.mu" ');

The read command reads and executes the myProcedure.mu file in MuPAD.
After that, you can call the myProc procedure with any valid parameter. For
example, compute the factorial of 15:

eng.feval('myProc', 15)

ans =
1307674368000

Clearing Assumptions and Resetting the Symbolic
Engine
The symbolic engine workspace associated with the MATLAB workspace
is usually empty. The MATLAB workspace tracks the values of symbolic
variables, and passes them to the symbolic engine for evaluation as necessary.
However, the symbolic engine workspace contains all assumptions you make
about symbolic variables, such as whether a variable is real or positive.
These assumptions can affect solutions to equations, simplifications, and
transformations, as explained in “Examples of the Effect of Assumptions”
on page 4-54.

Note These commands

syms x
x = sym('x')
clear x

clear any existing value of x in the MATLAB workspace, but do not clear
assumptions about x in the symbolic engine workspace.

4-51

4 MuPAD® in Symbolic Math Toolbox™

If you make an assumption about the nature of a variable, for example,
using the commands

syms x real

or

syms x positive

then clearing the variable x from the MATLAB workspace does not clear the
assumption from the symbolic engine workspace. To clear the assumption,
enter the command

syms x clear

For details, see “Checking a Variable’s Assumptions” on page 4-53 and
“Examples of the Effect of Assumptions” on page 4-54.

If you reset the symbolic engine by entering the command

reset(symengine)

or if you change symbolic engines with the symengine command, MATLAB
no longer recognizes any symbolic variables that exist in the MATLAB
workspace. Clear the variables with the clear command, or renew them with
the syms or sym command.

This example shows how the MATLAB workspace and the symbolic engine
workspace respond to a sequence of commands.

Step Command MATLAB
Workspace

MuPAD Engine
Workspace

1 syms x positive x x is positive

2 clear x empty x is positive

3 syms x x x is positive

4 syms x clear x empty

4-52

Integration of MuPAD® and MATLAB®

Checking a Variable’s Assumptions
To check whether a variable, say x, has any assumptions in the symbolic
engine workspace associated with the MATLAB workspace, enter the
following command in the MATLAB Command Window:

evalin(symengine,'getprop(x)')

• If the returned answer is C_, there are no assumptions about the variable.
(C_ means it can be any complex number.)

• If the returned value is anything else, there are assumptions about the
variable.

For example:

syms x real
evalin(symengine,'getprop(x)')

ans =
R_

syms x clear

syms z
evalin(symengine,'assume(z <> 0)')
evalin(symengine,'getprop(z)')

ans =
C_ minus {0}

syms z clear
evalin(symengine,'getprop(z)')

ans =
C_

For details about basic sets that can be returned as assumptions, enter:

doc(symengine,'solvelib::BasicSet')

4-53

4 MuPAD® in Symbolic Math Toolbox™

Examples of the Effect of Assumptions
Assumptions can affect the answers returned by the solve function. They
also can affect the results of simplifications. The only assumptions you can
make using MATLAB commands are real or positive.

For example, consider what transpires when solving the equation x^3 = 1:

syms x
solve('x^3 = 1')

ans =
1

- (3^(1/2)*i)/2 - 1/2
(3^(1/2)*i)/2 - 1/2

syms x real
solve('x^3 = 1')

ans =
1

However, clearing x does not change the underlying assumption that x is real:

clear x
syms x
solve('x^3 = 1')

ans =
1

Clearing x with syms x clear clears the assumption:

syms x clear
solve('x^3 = 1')

ans =
1

- (3^(1/2)*i)/2 - 1/2
(3^(1/2)*i)/2 - 1/2

Using evalin or feval, you can make a variety of assumptions about an
expression; see “Calling Built-In MuPAD Functions from the MATLAB

4-54

Integration of MuPAD® and MATLAB®

Command Window” on page 4-40. To clear all such assumptions, use the
command syms x clear, as in this example:

evalin(symengine,'assume(a <> 0)');
evalin(symengine,'solve(a*x^2 + b*x + c = 0,x)')

ans =
{-(b - (b^2 - 4*a*c)^(1/2))/(2*a),...
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)}

syms a clear
evalin(symengine,'solve(a*x^2 + b*x + c = 0,x)')

ans =
piecewise([a <> 0, {-(b - (b^2 - 4*a*c)^(1/2))/(2*a),...

-(b + (b^2 - 4*a*c)^(1/2))/(2*a)}],...
[a = 0 and b <> 0, {-c/b}], [a = 0 and b = 0 and c = 0, C_],...
[a = 0 and b = 0 and c <> 0, {}])

4-55

4 MuPAD® in Symbolic Math Toolbox™

Integrating Symbolic Computations in Other Toolboxes
and Simulink

In this section...

“Creating MATLAB Functions from MuPAD Expressions” on page 4-56

“Creating MATLAB Function Blocks from MuPAD Expressions” on page
4-59

“Creating Simscape Equations from MuPAD Expressions” on page 4-61

Creating MATLAB Functions from MuPAD Expressions
Symbolic Math Toolbox lets you create a MATLAB function from a symbolic
expression. A MATLAB function created from a symbolic expression accepts
numeric arguments and evaluates the expression applied to the arguments.
You can generate a function handle or a file that contains a MATLAB
function. The generated file is available for use in any MATLAB calculation,
independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Command Window, see “Generating MATLAB
Functions” on page 3-135.

When you use the MuPAD notebook interface, all your symbolic expressions
are written in the MuPAD language. To be able to create a MATLAB function
from such expressions, you must convert it to the MATLAB language. There
are two approaches for converting a MuPAD expression to the MATLAB
language:

• Assign the MuPAD expression to a variable, and copy that variable from
a notebook to the MATLAB workspace. This approach lets you create a
function handle or a file that contains a MATLAB function. It also requires
using a handle to the notebook.

• Generate MATLAB code from the MuPAD expression in a notebook. This
approach limits your options to creating a file. You can skip creating a
handle to the notebook.

The generated MATLAB function can depend on the approach that you chose.
For example, code can be optimized differently or not optimized at all.

4-56

Integrating Symbolic Computations in Other Toolboxes and Simulink®

Suppose you want to create a MATLAB function from a symbolic matrix that
converts spherical coordinates of any point to its Cartesian coordinates. First,
open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the symbolic matrix S that converts spherical
coordinates to Cartesian coordinates:

x := r*sin(a)*cos(b):
y := r*sin(a)*sin(b):
z := r*cos(b):
S := matrix([x, y, z]):

Now convert matrix S to the MATLAB language. Choose the best approach
for your task.

Copying MuPAD Variables to the MATLAB Workspace
If your notebook has a handle, like notebook_handle in this example, you can
copy variables from that notebook to the MATLAB workspace with the getVar
function, and then create a MATLAB function. For example, to convert the
symbolic matrix S to a MATLAB function:

1 Copy variable S to the MATLAB workspace:

S = getVar(notebook_handle,'S')

Variable S and its value (the symbolic matrix) appear in the MATLAB
workspace and in the MATLAB Command Window:

S =
r*cos(b)*sin(a)
r*sin(a)*sin(b)

r*cos(b)

2 Use matlabFunction to create a MATLAB function from the symbolic
matrix. To generate a MATLAB function handle, use matlabFunction
without additional parameters:

h = matlabFunction(S)

4-57

4 MuPAD® in Symbolic Math Toolbox™

h =
@(a,b,r)[r.*cos(b).*sin(a);r.*sin(a).*sin(b);r.*cos(b)]

To generate a file containing the MATLAB function, use the parameter
file and specify the path to the file and its name. For example, save the
MATLAB function to the file cartesian.m in the current folder:

S = matlabFunction(S,'file', 'cartesian.m');

You can open and edit cartesian.m in the MATLAB Editor.

Generating MATLAB Code in a MuPAD Notebook
To generate the MATLAB code from a MuPAD expression within the MuPAD
notebook, use the generate::MATLAB function. Then, you can create a new
file that contains an empty MATLAB function, copy the code, and paste it
there. Alternatively, you can create a file with a MATLAB formatted string
representing a MuPAD expression, and then add appropriate syntax to create
a valid MATLAB function.

1 In the MuPAD notebook interface, use the generate::MATLAB function to
generate MATLAB code from the MuPAD expression. Instead of printing
the result on screen, use the fprint function to create a file and write the
generated code to that file:

fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):

Note If the file with this name already exists, fprint replaces the
contents of this file with the converted expression.

4-58

Integrating Symbolic Computations in Other Toolboxes and Simulink®

2 Open cartesian.m. It contains a MATLAB formatted string representing
matrix S:

S = zeros(3,1);
S(1,1) = r*cos(b)*sin(a);
S(2,1) = r*sin(a)*sin(b);
S(3,1) = r*cos(b);

3 To convert this file to a valid MATLAB function, add the keywords
function and end, the function name (must match the file name), input
and output arguments, and comments:

Creating MATLAB Function Blocks from MuPAD
Expressions
Symbolic Math Toolbox lets you create a MATLAB function block from a
symbolic expression. The generated block is available for use in Simulink
models, whether or not the computer that runs the simulations has a license
for Symbolic Math Toolbox.

If you work in the MATLAB Command Window, see “Generating MATLAB
Function Blocks” on page 3-140.

The MuPAD notebook interface does not provide a function for generating a
block. Therefore, to be able to create a block from the MuPAD expression:

1 In a MuPAD notebook, assign that expression to a variable.

4-59

4 MuPAD® in Symbolic Math Toolbox™

2 Use the getVar function to copy that variable from a notebook to the
MATLAB workspace.

For details about these steps, see “Copying MuPAD Variables to the MATLAB
Workspace” on page 4-57.

When the expression that you want to use for creating a MATLAB function
block appears in the MATLAB workspace, use the emlBlock function to create
a block from that expression.

For example, open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the following symbolic expression:

r := sqrt(x^2 + y^2)

Use getVar to copy variable r to the MATLAB workspace:

r = getVar(notebook_handle,'r')

Variable r and its value appear in the MATLAB workspace and in the
MATLAB Command Window:

r =
(x^2 + y^2)^(1/2)

Before generating a MATLAB Function block from the expression, create
an empty model or open an existing one. For example, create and open the
new model my_system:

new_system('my_system');
open_system('my_system')

Since the variable and its value are in the MATLAB workspace, you can use
emlBlock to generate the block my_block:

emlBlock('my_system/my_block', r)

4-60

Integrating Symbolic Computations in Other Toolboxes and Simulink®

You can open and edit the block in the MATLAB Editor. To open the block,
select Edit > Open Block or use the context menu.

function r = my_block(x,y)
%#codegen

r = sqrt(x.^2+y.^2);

Creating Simscape Equations from MuPAD
Expressions
Symbolic Math Toolbox lets you integrate symbolic computations into the
Simscape modeling workflow by using the results of these computations in
the Simscape equation section.

If you work in the MATLAB Command Window, see “Generating Simscape
Equations” on page 3-144.

If you work in the MuPAD notebook interface, you can:

4-61

4 MuPAD® in Symbolic Math Toolbox™

• Assign the MuPAD expression to a variable, copy that variable from
a notebook to the MATLAB workspace, and use simscapeEquation to
generate the Simscape equation in the MATLAB Command Window.

• Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the
equation and paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the
solution of the ordinary differential equation computed in the notebook
interface:

1 Open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

2 In this notebook, define the following equation:

s:= ode(y'(t) = y(t)^2, y(t)):

3 Decide whether you want to generate the Simscape equation in the MuPAD
notebook interface or in the MATLAB Command Window.

Generating Simscape Equations in the MuPAD Notebook
Interface
To generate the Simscape equation in the same notebook, use
generate::Simscape. To display generated Simscape code on screen, use the
print function. To remove quotes and expand special characters like line
breaks and tabs, use the printing option Unquoted:

print(Unquoted, generate::Simscape(s))

This command returns the Simscape equation that you can copy and paste to
the Simscape equation section:

-y^2+y.der == 0.0;

4-62

Integrating Symbolic Computations in Other Toolboxes and Simulink®

Generating Simscape Equations in the MATLAB Command
Window
To generate the Simscape equation in the MATLAB Command Window,
follow these steps:

1 Use getVar to copy variable s to the MATLAB workspace:

s = getVar(notebook_handle, 's')

Variable s and its value appear in the MATLAB workspace and in the
MATLAB Command Window:

s =
ode(D(y)(t) - y(t)^2, y(t))

2 Use simscapeEquation to generate the Simscape equation from s:

simscapeEquation(s)

You can copy and paste the generated equation to the Simscape equation
section. Do not copy the automatically generated variable ans and the equal
sign that follows it.

ans =
s == (-y^2+y.der == 0.0);

4-63

4 MuPAD® in Symbolic Math Toolbox™

4-64

5

Function Reference

Calculus (p. 5-2) Perform calculus operations on
symbolic expressions

Linear Algebra (p. 5-2) Symbolic matrix manipulation

Simplification (p. 5-3) Modify or simplify symbolic data

Solution of Equations (p. 5-3) Solve symbolic expression

Variable-Precision Arithmetic
(p. 5-4)

Computing that requires exact
control over numeric accuracy

Arithmetic Operations (p. 5-4) Perform arithmetic on symbolic
expressions

Special Functions (p. 5-5) Specific mathematical applications

MuPAD (p. 5-5) Access MuPAD

Pedagogical and Graphical
Applications (p. 5-6)

Provide more information with plots
and calculations

Conversions (p. 5-7) Convert symbolic data from one data
type to another

Basic Operations (p. 5-8) Basic operations of symbolic data

Integral and Z-Transforms (p. 5-9) Perform integral transforms and
z-transforms

5 Function Reference

Calculus
diff Differentiate symbolic expression

int Integrate symbolic expression

jacobian Jacobian matrix

limit Compute limit of symbolic expression

symsum Evaluate symbolic sum of series

taylor Taylor series expansion

Linear Algebra
colspace Column space of matrix

det Compute determinant of symbolic
matrix

diag Create or extract diagonals of
symbolic matrices

eig Compute symbolic eigenvalues and
eigenvectors

expm Compute symbolic matrix
exponential

inv Compute symbolic matrix inverse

jordan Jordan form of matrix

null Form basis for null space of matrix

poly Characteristic polynomial of matrix

rank Compute rank of symbolic matrix

rref Compute reduced row echelon form
of matrix

svd Compute singular value
decomposition of symbolic matrix

5-2

Simplification

tril Return lower triangular part of
symbolic matrix

triu Return upper triangular part of
symbolic matrix

Simplification
coeffs List coefficients of multivariate

polynomial

collect Collect coefficients

expand Symbolic expansion of polynomials
and elementary functions

factor Factorization

horner Horner nested polynomial
representation

numden Numerator and denominator

simple Search for simplest form of symbolic
expression

simplify Algebraic simplification

subexpr Rewrite symbolic expression in
terms of common subexpressions

subs Symbolic substitution in symbolic
expression or matrix

Solution of Equations
compose Functional composition

dsolve Symbolic solution of ordinary
differential equations

5-3

5 Function Reference

finverse Functional inverse

solve Solve equations and systems

Variable-Precision Arithmetic
digits Variable-precision accuracy

vpa Variable-precision arithmetic

Arithmetic Operations
+ Addition

- Subtraction

* Multiplication

.* Array multiplication

\ Left division

.\ Array left division

/ Right division

./ Array right division

^ Matrix or scalar raised to a power

.^ Array raised to a power

' Complex conjugate transpose

.' Real transpose

5-4

Special Functions

Special Functions
cosint Cosine integral

dirac Dirac delta

gamma Gamma function

heaviside Compute Heaviside step function

hypergeom Generalized hypergeometric

lambertw Lambert W function

mfun Numeric evaluation of special
mathematical function

mfunlist List special functions for use with
mfun

sinint Sine integral

zeta Compute Riemann zeta function

MuPAD
clear all Remove items from MATLAB

workspace and reset MuPAD engine

doc Get help for MuPAD functions

evalin Evaluate MuPAD expressions

feval Evaluate MuPAD expressions

getVar Get variable from MuPAD notebook

mupad Start MuPAD notebook

mupadwelcome Start MuPAD interfaces

openmn Open MuPAD notebook

openmu Open MuPAD program file

openmuphlp Open MuPAD help file

5-5

5 Function Reference

openxvc Open MuPAD XVC graphics file

openxvz Open MuPAD XVZ graphics file

reset Close MuPAD engine

setVar Assign variable in MuPAD notebook

symengine Return symbolic engine

trace Enable and disable tracing of
MuPAD commands

Pedagogical and Graphical Applications
ezcontour Contour plotter

ezcontourf Filled contour plotter

ezmesh 3-D mesh plotter

ezmeshc Combined mesh and contour plotter

ezplot Function plotter

ezplot3 3-D parametric curve plotter

ezpolar Polar coordinate plotter

ezsurf 3-D colored surface plotter

ezsurfc Combined surface and contour
plotter

funtool Function calculator

rsums Interactive evaluation of Riemann
sums

taylortool Taylor series calculator

5-6

Conversions

Conversions
ccode C code representation of symbolic

expression

char Convert symbolic objects to strings

double Convert symbolic matrix toMATLAB
numeric form

emlBlock Convert symbolic expression to
MATLAB Function block

fortran Fortran representation of symbolic
expression

int16 Convert symbolic matrix to signed
integers

int32 Convert symbolic matrix to signed
integers

int64 Convert symbolic matrix to signed
integers

int8 Convert symbolic matrix to signed
integers

latex LaTeX representation of symbolic
expression

matlabFunction Convert symbolic expression to
function handle or file

poly2sym Polynomial coefficient vector to
symbolic polynomial

simscapeEquation Convert symbolic expressions to
Simscape language equations

single Convert symbolic matrix to single
precision

sym2poly Symbolic-to-numeric polynomial
conversion

5-7

5 Function Reference

uint16 Convert symbolic matrix to unsigned
integers

uint32 Convert symbolic matrix to unsigned
integers

uint64 Convert symbolic matrix to unsigned
integers

uint8 Convert symbolic matrix to unsigned
integers

Basic Operations
ceil Round symbolic matrix toward

positive infinity

conj Symbolic complex conjugate

eq Perform symbolic equality test

fix Round toward zero

floor Round symbolic matrix toward
negative infinity

frac Symbolic matrix element-wise
fractional parts

imag Imaginary part of complex number

log10 Logarithm base 10 of entries of
symbolic matrix

log2 Logarithm base 2 of entries of
symbolic matrix

mod Symbolic matrix element-wise
modulus

pretty Prettyprint symbolic expressions

quorem Symbolic matrix element-wise
quotient and remainder

5-8

Integral and Z-Transforms

real Real part of complex symbolic
number

round Symbolic matrix element-wise round

size Symbolic matrix dimensions

sort Sort symbolic vectors, matrices, or
polynomials

sym Define symbolic objects

syms Shortcut for constructing symbolic
objects

symvar Find symbolic variables in symbolic
expression or matrix

Integral and Z-Transforms
fourier Fourier integral transform

ifourier Inverse Fourier integral transform

ilaplace Inverse Laplace transform

iztrans Inverse z-transform

laplace Laplace transform

ztrans z-transform

5-9

5 Function Reference

5-10

6

Functions — Alphabetical
List

Arithmetic Operations

Purpose Perform arithmetic operations on symbols

Syntax A+B
A-B
A*B
A.*B
A\B
A.\B
B/A
A./B
A^B
A.^B
A'
A.'

Description + Matrix addition. A+B adds A and B. A and B must have
the same dimensions, unless one is scalar.

- Matrix subtraction. A-B subtracts B from A. A and B
must have the same dimensions, unless one is scalar.

* Matrix multiplication. A*B is the linear algebraic
product of A and B. The number of columns of A must
equal the number of rows of B, unless one is a scalar.

.* Array multiplication. A.*B is the entry-by-entry
product of A and B. A and B must have the same
dimensions, unless one is scalar.

\ Matrix left division. A\B solves the symbolic linear
equations A*X=B for X. Note that A\B is roughly
equivalent to inv(A)*B. Warning messages are
produced if X does not exist or is not unique.
Rectangular matrices A are allowed, but the equations
must be consistent; a least squares solution is not
computed.

6-2

Arithmetic Operations

.\ Array left division. A.\B is the matrix with entries
B(i,j)/A(i,j). A and B must have the same
dimensions, unless one is scalar.

/ Matrix right division. B/A solves the symbolic linear
equation X*A=B for X. Note that B/A is the same as
(A.'\B.').'. Warning messages are produced if X
does not exist or is not unique. Rectangular matrices
A are allowed, but the equations must be consistent; a
least squares solution is not computed.

./ Array right division. A./B is the matrix with entries
A(i,j)/B(i,j). A and B must have the same
dimensions, unless one is scalar.

^ Matrix power. A^B raises the square matrix A to the
integer power B. If A is a scalar and B is a square
matrix, A^B raises A to the matrix power B, using
eigenvalues and eigenvectors. A^B, where A and B are
both matrices, is an error.

.^ Array power. A.^B is the matrix with entries
A(i,j)^B(i,j). A and B must have the same
dimensions, unless one is scalar.

' Matrix Hermitian transpose. If A is complex, A' is the
complex conjugate transpose.

.' Array transpose. A.' is the real transpose of A. A.'
does not conjugate complex entries.

Examples The following statements

syms a b c d;
A = [a b; c d];
A*A/A
A*A-A^2

return

6-3

Arithmetic Operations

[a, b]
[c, d]

[0, 0]
[0, 0]

The following statements

syms a11 a12 a21 a22 b1 b2;
A = [a11 a12; a21 a22];
B = [b1 b2];
X = B/A;
x1 = X(1)
x2 = X(2)

return

x1 =
-(a21*b2 - a22*b1)/(a11*a22 - a12*a21)

x2 =
(a11*b2 - a12*b1)/(a11*a22 - a12*a21)

See Also null | solve

6-4

ccode

Purpose C code representation of symbolic expression

Syntax ccode(s)
ccode(s,'file',fileName)

Description ccode(s) returns a fragment of C that evaluates the symbolic
expression s.

ccode(s,'file',fileName) writes an “optimized” C code fragment
that evaluates the symbolic expression s to the file named fileName.
“Optimized” means intermediate variables are automatically generated
in order to simplify the code. MATLAB generates intermediate
variables as a lowercase letter t followed by an automatically generated
number, for example t32.

Examples The statements

syms x
f = taylor(log(1+x));
ccode(f)

return

t0 =
x-(x*x)*(1.0/2.0)+(x*x*x)*(1.0/3.0)-(x*x*x*x)*(1.0/4.0)+...
(x*x*x*x*x)*(1.0/5.0);

The statements

H = sym(hilb(3));
ccode(H)

return

H[0][0] = 1.0;
H[0][1] = 1.0/2.0;
H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0;

6-5

ccode

H[1][1] = 1.0/3.0;
H[1][2] = 1.0/4.0;
H[2][0] = 1.0/3.0;
H[2][1] = 1.0/4.0;
H[2][2] = 1.0/5.0;

The statements

syms x
z = exp(-exp(-x));
ccode(diff(z,3),'file','ccodetest');

return a file named ccodetest containing the following:

t2 = exp(-x);
t3 = exp(-t2);
t0 = t3*exp(x*(-2.0))*(-3.0)+t3*exp(x*(-3.0))+t2*t3;

See Also fortran | latex | matlabFunction | pretty

How To • “Generating Code from Symbolic Expressions” on page 3-134

6-6

ceil

Purpose Round symbolic matrix toward positive infinity

Syntax Y = ceil(x)

Description Y = ceil(x) is the matrix of the smallest integers greater than or
equal to x.

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also round | floor | fix | frac

6-7

char

Purpose Convert symbolic objects to strings

Syntax char(A)
char(A, d)

Description char(A) converts a symbolic scalar or a symbolic array to a string.

char(A, d) converts a symbolic scalar or array to a string. For symbolic
arrays, the second parameter specifies the form of the resulting string.
For symbolic scalars, this parameter does not affect the result.

Input
Arguments

A

A symbolic scalar or a symbolic array

d

A number that specifies the format of the resulting string. For
symbolic arrays:

char (A, 1) results in matrix([...])

char(A, 2) results in matrix([[...],[...]])

char(A, d) for all other values of the parameter d results in
array([1..m, 1..n, 1..p], [(1,1,1) = xxx,...,(m,n,p)
= xxx])

Examples Convert symbolic expressions to strings, and then concatenate the
strings:

syms x;
y = char(x^3 + x^2 + 2*x - 1);
name = [y, ' presents a polynomial expression']

The result is:

name =
x^3 + x^2 + 2*x - 1 presents a polynomial expression

6-8

char

Convert a symbolic matrix to a string:

A = sym(hilb(3))
char(A)

The result is:

A =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

ans =
matrix([[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]])

See Also sym | double | pretty

6-9

clear all

Purpose Remove items from MATLAB workspace and reset MuPAD engine

Syntax clear all

Description clear all clears all objects in the MATLAB workspace and closes the
MuPAD engine associated with the MATLAB workspace resetting all
its assumptions.

See Also reset

6-10

coeffs

Purpose List coefficients of multivariate polynomial

Syntax C = coeffs(p)
C = coeffs(p, x)
[C, T] = coeffs(p, x)

Description C = coeffs(p) returns the coefficients of the polynomial p with respect
to all the indeterminates of p.

C = coeffs(p, x) returns the coefficients of the polynomial p with
respect to x.

[C, T] = coeffs(p, x) returns a list of the coefficients and a list
of the terms of p. There is a one-to-one correspondence between the
coefficients and the terms of p.

Examples List the coefficients of the following single-variable polynomial:

syms x
t = 16*log(x)^2 + 19*log(x) + 11;
coeffs(t)

The result is:

ans =
[11, 19, 16]

List the coefficients of the following polynomial with respect to the
indeterminate sin(x):

syms a b c x
y = a + b*sin(x) + c*sin(2*x);
coeffs(y, sin(x))

The result is:

ans =

6-11

coeffs

[a + c*sin(2*x), b]

List the coefficients of the following multivariable polynomial with
respect to all the indeterminates and with respect to the variable x only:

syms x y
z = 3*x^2*y^2 + 5*x*y^3;
coeffs(z)
coeffs(z,x)

The results are:

ans =
[5, 3]

ans =
[5*y^3, 3*y^2]

Display the list of the coefficients and the list of the terms of the
following polynomial expression:

syms x y
z = 3*x^2*y^2 + 5*x*y^3;
[c,t] = coeffs(z,y)

The results are:

c =
[5*x, 3*x^2]

t =
[y^3, y^2]

See Also sym2poly

6-12

collect

Purpose Collect coefficients

Syntax R = collect(S)
R = collect(S,v)

Description R = collect(S) returns an array of collected polynomials for each
polynomial in the array S of polynomials.

R = collect(S,v) collects terms containing the variable v.

Examples The following statements

syms x y;
R1 = collect((exp(x)+x)*(x+2))
R2 = collect((x+y)*(x^2+y^2+1), y)
R3 = collect([(x+1)*(y+1),x+y])

return

R1 =
x^2 + (exp(x) + 2)*x + 2*exp(x)

R2 =
y^3 + x*y^2 + (x^2 + 1)*y + x*(x^2 + 1)

R3 =
[y + x*(y + 1) + 1, x + y]

See Also expand | factor | simple | simplify | syms

6-13

colspace

column space
Purpose Column space of matrix

Syntax B = colspace(A)

Description B = colspace(A) returns a matrix whose columns form a basis for the
column space of A. The matrix A can be symbolic or numeric.

Examples Find the basis for the column space of this matrix:

A = sym([2,0;3,4;0,5])
B = colspace(A)

The result is:

A =
[2, 0]
[3, 4]
[0, 5]

B =
[1, 0]
[0, 1]
[-15/8, 5/4]

See Also null | size

6-14

compose

Purpose Functional composition

Syntax compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)

Description compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x
is the symbolic variable of f as defined by symvar and y is the symbolic
variable of g as defined by symvar.

compose(f,g,z) returns f(g(z)) where f = f(x), g = g(y), and x
and y are the symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) returns f(g(z)) and makes x the independent
variable for f. That is, if f = cos(x/t), then compose(f,g,x,z)
returns cos(g(z)/t)whereas compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent
variable for f and y the independent variable for g. For f = cos(x/t)
and g = sin(y/u), compose(f,g,x,y,z) returns cos(sin(z/u)/t)
whereas compose(f,g,x,u,z) returns cos(sin(y/z)/t).

Examples Suppose

syms x y z t u;
f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u);

Then

a = compose(f,g)
b = compose(f,g,t)
c = compose(h,g,x,z)
d = compose(h,g,t,z)
e = compose(h,p,x,y,z)
f = compose(h,p,t,u,z)

returns:

6-15

compose

a =
1/(sin(y)^2 + 1)

b =
1/(sin(t)^2 + 1)

c =
sin(z)^t

d =
x^sin(z)

e =
(1/exp(z/u))^t

f =
x^(1/exp(y/z))

See Also finverse | subs | syms

6-16

conj

Purpose Symbolic complex conjugate

Syntax conj(X)

Description conj(X) is the complex conjugate of X.

For a complex X, conj(X) = real(X) - i*imag(X).

See Also real | imag

6-17

cosint

Purpose Cosine integral

Syntax Y = cosint(X)

Description Y = cosint(X) evaluates the cosine integral function at the elements of
X, a numeric matrix, or a symbolic matrix. The cosine integral function
is defined by

Ci x x
t
t

dt
x

() ln()
cos

,= + + −∫
1

0

where  is Euler’s constant 0.577215664...

Examples Compute cosine integral for a numerical value:

cosint(7.2)

The result is:

0.0960

Compute the cosine integral for [0:0.1:1] :

cosint([0:0.1:1])

The result is:

Columns 1 through 6

-Inf -1.7279 -1.0422 -0.6492 -0.3788 -0.1778

Columns 7 through 11

-0.0223 0.1005 0.1983 0.2761 0.3374

The statements

syms x;

6-18

cosint

f = cosint(x);
diff(f)

return

cos(x)/x

See Also sinint

6-19

det

Purpose Compute determinant of symbolic matrix

Syntax r = det(A)

Description r = det(A) computes the determinant of A, where A is a symbolic or
numeric matrix. det(A) returns a symbolic expression for a symbolic A
and a numeric value for a numeric A.

Examples Compute the determinant of the following symbolic matrix:

syms a b c d;
det([a, b; c, d])

The result is:

ans =
a*d - b*c

Compute the determinant of the following matrix containing the
symbolic numbers:

A = sym([2/3 1/3; 1 1])
r = det(A)

The result is:

A =
[2/3, 1/3]
[1, 1]

r =
1/3

See Also rank | eig

6-20

diag

Purpose Create or extract diagonals of symbolic matrices

Syntax diag(A, k)
diag(A)

Description diag(A, k) returns a square symbolic matrix of order n + abs(k),
with the elements of A on the k-th diagonal. A must present a row
or column vector with n components. The value k = 0 signifies the
main diagonal. The value k > 0 signifies the k-th diagonal above the
main diagonal. The value k < 0 signifies the k-th diagonal below the
main diagonal. If A is a square symbolic matrix, diag(A, k) returns a
column vector formed from the elements of the k-th diagonal of A.

diag(A), where A is a vector with n components, returns an n-by-n
diagonal matrix having A as its main diagonal. If A is a square symbolic
matrix, diag(A) returns the main diagonal of A.

Examples Create a symbolic matrix with the main diagonal presented by the
elements of the vector v:

syms a b c;
v = [a b c];
diag(v)

The result is:

ans =
[a, 0, 0]
[0, b, 0]
[0, 0, c]

Create a symbolic matrix with the second diagonal below the main one
presented by the elements of the vector v:

syms a b c;
v = [a b c];

6-21

diag

diag(v, -2)

The result is:

ans =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[a, 0, 0, 0, 0]
[0, b, 0, 0, 0]
[0, 0, c, 0, 0]

Extract the main diagonal from a square matrix:

syms a b c x y z;
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A)

The result is

ans =
a
2
z

Extract the first diagonal above the main one:

syms a b c x y z;
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A, 1)

The result is:

ans =
b
3

6-22

diag

See Also tril | triu

6-23

diff

Purpose Differentiate symbolic expression

Syntax diff(expr)
diff(expr, v)
diff(expr, sym('v'))
diff(expr, n)
diff(expr, v, n)
diff(expr, n, v)

Description diff(expr) differentiates a symbolic expression expr with respect to
its free variable as determined by symvar.

diff(expr, v) and diff(expr, sym('v')) differentiate expr with
respect to v.

diff(expr, n) differentiates expr n times. n is a positive integer.

diff(expr, v, n) and diff(expr, n, v) differentiate expr with
respect to v n times.

Examples Differentiate the following single-variable expression one time:

syms x;
diff(sin(x^2))

The result is

ans =
2*x*cos(x^2)

Differentiate the following single-variable expression six times:

syms t;
diff(t^6,6)

The result is

ans =

6-24

diff

720

Differentiate the following expression with respect to t:

syms x t;
diff(sin(x*t^2), t)

The result is

ans =
2*t*x*cos(t^2*x)

See Also int | jacobian | symvar

6-25

digits

Purpose Variable-precision accuracy

Syntax digits
digits(d)
d = digits

Description digits specifies the minimum number of significant (nonzero) decimal
digits that MuPAD software uses to do variable-precision arithmetic
(VPA). The default value is 32 digits.

digits(d) sets the current VPA accuracy to at least d significant
(nonzero) decimal digits. The value d must be a positive integer larger

than 1 and smaller than 2 129 + .

d = digits returns the current VPA accuracy.

Examples The digits function specifies the number of significant (nonzero) digits.
For example, use 4 significant digits to compute the ratio 1/3 and the
ratio 1/3000:

old = digits;
digits(4);
vpa(1/3)
vpa(1/3000)
digits(old);

ans =
0.3333

ans =
0.0003333

To change the VPA accuracy for one operation without changing the
current digits setting, use the vpa function. For example, compute the
ratio 1/3 with the default 32 digits, 10 digits, and 40 digits:

6-26

digits

vpa(1/3)
vpa(1/3, 10)
vpa(1/3, 40)

ans =
0.33333333333333333333333333333333

ans =
0.3333333333

ans =
0.33

The number of digits that you specify by the vpa function or the digits
function is the minimal number of digits. Internally, the toolbox can use
more digits than you specify. These additional digits are called guard
digits. For example, set the number of digits to 4, and then display the
floating-point approximation of 1/3 using 4 digits:

old = digits;
digits(4);
a = vpa(1/3)

a =
0.3333

Now, display a using 20 digits. The result shows that the toolbox
internally used more than 4 digits when computing a. The last digits in
the following result are incorrect because of the round-off error:

digits(20);
vpa(a)
digits(old);

ans =
0.33333333333303016843

6-27

digits

Hidden round-off errors can cause unexpected results. For example,
compute the number 1/10 with the default 32 digits accuracy and with
the 10 digits accuracy:

a = vpa(1/10)
old = digits;
digits(10);
b = vpa(1/10)
digits(old);

a =
0.1

b =
0.1

Now, compute the difference a - b. The result is not zero:

a - b

ans =
0.000000000000000000086736173798840354720600815844403

The difference a - b is not equal to zero because the toolbox
approximates the number b=0.1 with 32 digits. This approximation
produces round-off errors because the floating-point number 0.1 is
different from the rational number 1/10. When you compute the
difference a - b, the toolbox actually computes the difference as follows:

b = vpa(b)
a - b

b =
0.09999999999999999991326382620116

ans =
0.000000000000000000086736173798840354720600815844403

6-28

digits

Suppose, you convert a number to a symbolic object, and then perform
VPA operations on that object. The results can depend on the
conversion technique that you used to convert a floating-point number
to a symbolic object. The sym function lets you choose the conversion
technique by specifying the optional second argument, which can be
'r', 'f', 'd', or 'e'. The default is 'r'. For example, convert the
constant π=3.141592653589793... to a symbolic object:

r = sym(pi)
f = sym(pi, 'f')
d = sym(pi, 'd')
e = sym(pi, 'e')

r =
pi

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359

Set the number of digits to 4. Three of the four numeric approximations
give the same result:

digits(4);
vpa(r)
vpa(f)
vpa(d)
vpa(e)

ans =
3.142

6-29

digits

ans =
3.142

ans =
3.142

ans =
3.142 - 0.5515*eps

Now, set the number of digits to 40. The numeric approximation of
1/10 depends on the technique that you used to convert 1/10 to the
symbolic object:

digits(40);
vpa(r)
vpa(f)
vpa(d)
vpa(e)

ans =
3.141592653589793238462643383279502884197

ans =
3.141592653589793115997963468544185161591

ans =
3.1415926535897931159979634685442

ans =
3.141592653589793238462643383279502884197 -...
0.5515320334261838440111420612813370473538*eps

See Also double | vpa

6-30

dirac

Purpose Dirac delta

Syntax dirac(x)

Description dirac(x) returns the Dirac delta function of x.

The Dirac delta function, dirac, has the value 0 for all x not equal to 0
and the value Inf for x = 0. Several Symbolic Math Toolbox functions
return answers in terms of dirac.

Examples dirac has the property that

dirac x a f x f a() * () ()− =
−∞

∞

∫

for any function f and real number a. For example:

syms x a
a = 5;
int(dirac(x-a)*sin(x),-inf, inf)

ans =
sin(5)

dirac also has the following relationship to the function heaviside:

syms x;
diff(heaviside(x),x)

ans =
dirac(x)

See Also heaviside

6-31

doc

Purpose Get help for MuPAD functions

Syntax doc(symengine)
doc(symengine,'MuPAD_function_name')

Description doc(symengine) opens the MuPAD help browser.

doc(symengine,'MuPAD_function_name') opens the MuPAD help
browser at the definition of MuPAD_function_name.

Examples doc(symengine,'simplify') opens the following window.

How To • “Getting Help for MuPAD” on page 4-10

6-32

double

Purpose Convert symbolic matrix to MATLAB numeric form

Syntax r = double(S)

Description r = double(S) converts the symbolic object S to a numeric object.
If S is a symbolic constant or constant expression, double returns
a double-precision floating-point number representing the value of
S. If S is a symbolic matrix whose entries are constants or constant
expressions, double returns a matrix of double precision floating-point
numbers representing the values of S’s entries.

Examples Find the numeric value for the expression
1 5

2
+

:

double(sym('(1+sqrt(5))/2')))

The result is:

1.6180

The following statements

a = sym(2*sqrt(2));
b = sym((1-sqrt(3))^2);
T = [a, b];
double(T)

return

ans =
2.8284 0.5359

See Also sym | vpa

6-33

dsolve

Purpose Symbolic solution of ordinary differential equations

Syntax dsolve('eq1','eq2',...,'cond1','cond2',...,'v')
dsolve(...,'IgnoreAnalyticConstraints',value)

Description dsolve('eq1','eq2',...,'cond1','cond2',...,'v') symbolically
solves the ordinary differential equations eq1, eq2,... using v as
the independent variable. Here cond1,cond2,... specify boundary
or initial conditions or both. You also can use the following syntax:
dsolve('eq1, eq2',...,'cond1,cond2',...,'v'). The default
independent variable is t.

The letter D denotes differentiation with respect to the independent
variable. The primary default is d/dx. The letter D followed by a
digit denotes repeated differentiation. For example, D2 is d2/dx2.
Any character immediately following a differentiation operator is a
dependent variable. For example, D3y denotes the third derivative of
y(x) or y(t).

You can specify initial and boundary conditions by equations like y(a)
= b or Dy(a) = b, where y is a dependent variable and a and b are
constants. If the number of the specified initial conditions is less than
the number of dependent variables, the resulting solutions contain the
arbitrary constants C1, C2,....

You can input each equation or a condition as a separate symbolic
equation. The dsolve command accepts up to 12 input arguments.

dsolve can produce the following three types of outputs:

• For one equation and one output, dsolve returns the resulting
solution with multiple solutions to a nonlinear equation in a symbolic
vector.

• For several equations and an equal number of outputs, dsolve sorts
the results alphabetically and assigns them to the outputs.

• For several equations and a single output, dsolve returns a structure
containing the solutions.

6-34

dsolve

If dsolve cannot find a closed-form (explicit) solution, it attempts to
find an implicit solution. When dsolve returns an implicit solution, it
issues a warning. If dsolve cannot find either an explicit or an implicit
solution, then it issues a warning and returns the empty sym. In such
a case, you can find a numeric solution, using the MATLAB ode23 or
ode45 functions. In some cases involving nonlinear equations, the
output is an equivalent lower order differential equation or an integral.

dsolve(...,'IgnoreAnalyticConstraints',value) accepts the
following values:

• value = 'all' applies the purely algebraic simplifications to the
expressions on both sides of equations. These simplifications might
not be generally valid. The default value of this option is all.

• value = 'none' solves ordinary differential equations without
additional assumptions. The results obtained with this option are
correct for all values of the arguments.

Note By default, the solver does not guarantee general correctness
and completeness of the results. If you do not set the option
IgnoreAnalyticConstraints to none, always verify results returned
by the dsolve command.

If you do not set the value of the option IgnoreAnalyticConstraints
to none, the solver applies the following rules to the expressions on
both sides of an equation:

• The solutions of polynomial equations must be complete.

• ln() ln() ln()a b a b+ = ⋅ for all values of a and b . In particular, the
following equality is valid for all values of a , b , and c :

a b a bc c c⋅() = ⋅

6-35

dsolve

• ln lna b ab() = ⋅ for all values of a and b . In particular, the following
equality is valid for all values of a , b , and c :

a ab c b c() = ⋅

• The following equality is valid for all values of x :

- ln e xx() =
- arcsin sin x x()() = , arccos cos x x()() = , arctan tan x x()() =

- arcsinh sinh x =x()() , arccosh cosh x =x()() , arctanh tanh x =x()()

- W x e xk
x⋅() = for all values of k

• The solver can multiply both sides of an equation by any expression
except 0.

Examples Solving Ordinary Differential Equations Symbolically

dsolve('Dx = -a*x')

ans =
C2/exp(a*t)

Specifying the Dependent Variable

The following differential equation presents f as a dependent variable:

dsolve('Df = f + sin(t)')

ans =
C4*exp(t) - sin(t)/2 - cos(t)/2

6-36

dsolve

Specifying the Independent Variable

dsolve('(Dy)^2 + y^2 = 1','s')

ans =
1

-1
cosh(C11 + s*i)
cosh(C7 - s*i)

Setting Initial and Boundary Conditions

dsolve('Dy = a*y', 'y(0) = b')

ans =
b*exp(a*t)

dsolve('D2y = -a^2*y', 'y(0) = 1', 'Dy(pi/a) = 0')

ans =
1/(2*exp(a*t*i)) + exp(a*t*i)/2

Solving a System of Differential Equations

z = dsolve('Dx = y', 'Dy = -x')

z =
y: [1x1 sym]
x: [1x1 sym]

Enter z.x and z.y to see the results:

z.x

ans =
C19*cos(t) + C20*sin(t)

z.y

6-37

dsolve

ans =
C20*cos(t) - C19*sin(t)

Using the IgnoreAnalyticConstraints Option

By default, the solver applies the set of purely algebraic simplifications
that are not correct in general, but that can result in simple and
practical solutions:

y = dsolve('Dy = 1/sqrt(y)', 'y(0) = 1')

y =
((3*t)/2 + 1)^(2/3)

To obtain complete and generally correct solutions, set the value of the
option IgnoreAnalyticConstraints to none:

y = dsolve('Dy = 1/sqrt(y)', 'y(0) = 1',...
'IgnoreAnalyticConstraints','none')

y =
piecewise([C29 in Z_, Dom::ImageSet(exp(pi*l*(-(4*i)/3))*((3*t)/2 +...
exp(C29*pi*(-3*i))*exp(pi*l*((4*i)/3))^(3/2))^(2/3), l, Z_ intersect..
solve(- (2*pi)/3 + 2*C29*pi < arg(exp(pi*X504*((4*i)/3))), X504) inters
solve(arg(exp(pi*X504*((4*i)/3))) <= (2*pi)/3 + 2*C29*pi, X504) interse
Dom::Interval([-(3*(pi/2 - arg(C27 + t)/3))/(2*pi)],...
(3*(pi/2 + arg(C27 + t)/3))/(2*pi)))], [not C29 in Z_, {}])

If you apply algebraic simplifications, you can get explicit solutions for
some equations for which the solver cannot compute them using strict
mathematical rules:

dsolve('Dy = 19.6/sqrt(y) + 0.00196*y', 'y(0) = 1')

ans =
(exp((147*t)/50000 + log(10001)) - 10000)^(2/3)

versus

6-38

dsolve

dsolve('Dy = 19.6/sqrt(y) + 0.00196*y', 'y(0) = 1',
'IgnoreAnalyticConstraints','none')

ans =
piecewise([(3*Im(C36))/2 in Dom::Interval(-pi, [pi]) and...
C38 in Z_ and C39 in Z_,...
Dom::ImageSet(exp(pi*l*(-(4*i)/3))*(exp((147*t)/50000 +...
log((-1)^(3*C38)*exp(pi*l*((4*i)/3))^(3/2) + 10000) +...
C39*pi*(2*i)) - 10000)^(2/3), l, Z_ intersect...
solve(- (2*pi)/3 + 2*C38*pi < arg(exp(pi*X2803*((4*i)/3))), X2803)
solve(arg(exp(pi*X2803*((4*i)/3))) <= (2*pi)/3 + 2*C38*pi, X2803) i
Dom::Interval([-(3*(pi/2 - arg(exp((3*C36)/2 + (147*t)/50000) - 100
(3*(pi/2 + arg(exp((3*C36)/2 + (147*t)/50000) - 10000)/3))/(2*pi)))
[not (3*Im(C36))/2 in Dom::Interval(-pi, [pi])...
or not C38 in Z_ or not C39 in Z_, {}])

Diagnostics If dsolve cannot find an analytic solution for an equation, it prints
the warning:

Warning: Explicit solution could not be found.

and returns an empty sym object.

See Also syms

6-39

eig

Purpose Compute symbolic eigenvalues and eigenvectors

Syntax lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))

Description lambda = eig(A) returns a symbolic vector containing the eigenvalues
of the square symbolic matrix A.

[V,D] = eig(A) returns matrices V and D. The columns of V present
eigenvectors of A. The diagonal matrix D contains eigenvalues. If the
resulting V has the same size as A, the matrix A has a full set of linearly
independent eigenvectors that satisfy A*V = V*D.

[V,D,P] = eig(A) returns a vector of indices P. The length of P equals
to the total number of linearly independent eigenvectors, so that A*V
= V*D(P,P).

lambda = eig(vpa(A)) returns numeric eigenvalues using
variable-precision arithmetic.

[V,D] = eig(vpa(A)) returns numeric eigenvectors using
variable-precision arithmetic. If A does not have a full set of
eigenvectors, the columns of V are not linearly independent.

Examples Compute the eigenvalues for the magic square of order 5:

M = sym(magic(5));
eig(M)

The result is:

ans =
65

(625/2 - (5*3145^(1/2))/2)^(1/2)
((5*3145^(1/2))/2 + 625/2)^(1/2)

-(625/2 - (5*3145^(1/2))/2)^(1/2)

6-40

eig

-((5*3145^(1/2))/2 + 625/2)^(1/2)

Compute the eigenvalues for the magic square of order 5 using
variable-precision arithmetic:

M = sym(magic(5));
eig(vpa(M))

The result is:

ans =
65.0

21.27676547147379553062642669797423
13.12628093070921880252564308594914
-13.126280930709218802525643085949
-21.276765471473795530626426697974

Compute the eigenvalues and eigenvectors for one of the MATLAB test
matrices:

A = sym(gallery(5))
[v, lambda] = eig(A)

The results are:

A =
[-9, 11, -21, 63, -252]
[70, -69, 141, -421, 1684]
[-575, 575, -1149, 3451, -13801]
[3891, -3891, 7782, -23345, 93365]
[1024, -1024, 2048, -6144, 24572]

v =
0

21/256
-71/128

6-41

eig

973/256
1

lambda =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

See Also jordan | poly | svd | vpa

6-42

emlBlock

Purpose Convert symbolic expression to MATLAB Function block

Syntax emlBlock(block, f)
emlBlock(block, f1, f2, ...)
emlBlock(block, f1, f2, ..., param1, value1,...)

Description emlBlock(block, f) converts the symbolic expression f to a MATLAB
Function block that you can use in Simulink models. The parameter
block specifies the name of the block you create or modify. The block
should be a string.

emlBlock(block, f1, f2, ...) converts a list of the symbolic
expressions f1, f2, ... to a MATLAB Function block with multiple
outputs.

emlBlock(block, f1, f2, ..., param1, value1,...) converts a
list of the symbolic expressions f1, f2, ... to a MATLAB Function block
with multiple outputs, with the following options for parameter/value
pairs:

• Parameter = 'functionName' allows you to set the name of the
function. value should be a string. By default, value coincides with
the name of the block.

• Parameter = 'outputs' allows you to set the names of the output
ports. value should be a cell array of strings. The number of value
entries should equal or exceed the number of free variables in the
symbolic expression f. The default name of an output port consists of
the word out followed by the output port number, for example, out3.

• Parameter = 'vars' allows you to set the order of the variables
and the corresponding input ports of a block. The default order
is alphabetical. value should be either a cell array of strings or
symbolic arrays, or a vector of symbolic variables. The number of
value entries should equal or exceed the number of free variables in
the symbolic expression f.

6-43

emlBlock

Tip To convert a MuPAD expression or function to a MATLAB
Function block, use f = evalin(symengine,'MuPAD_Expression') or
f = feval(symengine, 'MuPAD_Function',x1,...,xn). emlBlock
cannot correctly convert some MuPAD expressions to a block. These
expressions do not trigger an error message. When converting a
MuPAD expression or function that is not on the MATLAB vs. MuPAD
Expressions list, always check the results of conversion. To verify the
results, you can:

• Run the simulation containing the resulting block.

• Open the block and verify that all the functions are defined in
MATLAB Function Library Reference.

Examples Before you can convert a symbolic expression to a MATLAB Function
block, create an empty model or open an existing one:

new_system('my_system');
open_system('my_system');

Use emlBlock to create the block my_block containing the symbolic
expression:

syms x y z
f = x^2 + y^2 +z^2;
emlBlock('my_system/my_block',f);

If you use the name of an existing block, the emlBlock command
replaces the definition of an existing block with the converted symbolic
expression.

You can open and edit the resulting block. To open a block, select
Edit > Open Block or use the context menu:

function f = my_block(x,y,z)
%#codegen

6-44

http://www.mathworks.com/help/toolbox/eml/ug/bq1h2z7-9.html

emlBlock

f = x.^2 + y.^2 + z.^2;

The following example generates a block and sets the function name
to my_function:

emlBlock('my_system/my_block', x, y, z,...
'functionName', 'my_function')

You can change the order of the input ports:

emlBlock('my_system/my_block', x, y, z,...
'vars', [y z x])

Also, you can rename the output variables and the corresponding ports:

emlBlock('my_system/my_block', x, y, z,...
'outputs',{'name1','name2','name3'})

emlBlock accepts several options simultaneously:

emlBlock('my_system/my_block', x, y, z,...
'functionName', 'my_function','vars', [y z x],...
'outputs',{'name1','name2','name3'})

You also can convert MuPAD expressions:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
emlBlock('my_system/my_block', f);

The resulting block contains the same expressions written in the
MATLAB language:

function f = my_block(x,y)
%#codegen

f = asin(x) + acos(y);

See Also ccode | fortran | matlabFunction | subs | sym2poly

6-45

emlBlock

How To • “Generating Code from Symbolic Expressions” on page 3-134

6-46

eq

Purpose Perform symbolic equality test

Syntax eq(A, B)
A == B

Description eq(A, B) compares each element of A for equality with the
corresponding element of B. If the elements are not equal or if either
element is undefined, the test fails. eq does not expand or simplify
expressions before making the comparison.

A == B is the alternate syntax for eq(A, B).

Examples Check equality of two symbolic matrices:

A = sym(hilb(10));
B = sym([1/11 1/12 1/13 1/14 1/15 1/16]);
eq(A(9, 3:8), B)

The result is:

ans =
1 1 1 1 1 1

Check the trigonometric identity:

syms x;
sin(x)^2 + cos(x)^2 == 1

The symbolic equality test might fail to recognize mathematical
equivalence of polynomial or trigonometric expressions because it does
not simplify or expand them. The result is:

ans =
0

6-47

eq

When testing mathematical equivalence of such expressions, simplify
the difference between the expressions, and then compare the result
with 0:

syms x;
simplify(sin(x)^2 + cos(x)^2 - 1) == 0

The result is:

ans =
1

See Also simplify

6-48

evalin

Purpose Evaluate MuPAD expressions

Syntax result = evalin(symengine,'MuPAD_expression')
[result,status] = evalin(symengine,'MuPAD_expression')

Description result = evalin(symengine,'MuPAD_expression') evaluates the
MuPAD expression MuPAD_expression, and returns result as a
symbolic object.

[result,status] = evalin(symengine,'MuPAD_expression')
returns the error status in status and the error message in result
if status is nonzero. If status is 0, result is a symbolic object;
otherwise, it is a string.

Examples Compute the discriminant of the following polynomial:

evalin(symengine,'polylib::discrim(a*x^2+b*x+c,x)')

The result is:

ans =
b^2 - 4*a*c

Do not use evalin to access the MuPAD log function that represents
the logarithm to an arbitrary base. The evalin command evaluates log
as the natural logarithm (the appropriate MuPAD function is ln):

evalin(symengine,'log(E)')

ans =
1

Evaluating log with two parameters results in the following error:

evalin(symengine,'log(10, 10)')

??? Error using ==> mupadengine.mupadengine>mupadengine.evalin at 124

Error: wrong no of args [ln]

6-49

evalin

See Also doc | feval

How To • “Calling Built-In MuPAD Functions from the MATLAB Command
Window” on page 4-40

6-50

expm

Purpose Compute symbolic matrix exponential

Syntax expm(A)

Description expm(A) computes the matrix exponential of the symbolic matrix A.

Examples Compute the matrix exponential for the following matrix and simplify
the result:

syms t;
A = [0 1; -1 0];
simplify(expm(t*A))

The result is:

ans =
[cos(t), sin(t)]
[-sin(t), cos(t)]

See Also eig

6-51

expand

Purpose Symbolic expansion of polynomials and elementary functions

Syntax expand(S)

Description expand(S) writes each element of a symbolic expression S as a product
of its factors. expand is often used with polynomials. It also expands
trigonometric, exponential, and logarithmic functions.

Examples Expand the expression:

syms x;
expand((x-2)*(x-4))

The result is:

ans =
x^2 - 6*x + 8

Expand the trigonometric expression:

syms x y;
expand(cos(x+y))

The result is:

ans =
cos(x)*cos(y) - sin(x)*sin(y)

Expand the exponent:

syms a b;
expand(exp((a+b)^2))

The result is:

ans =
exp(2*a*b)*exp(a^2)*exp(b^2)

Expand the expressions that form a vector:

6-52

expand

syms t;
expand([sin(2*t), cos(2*t)])

The result is:

ans =
[2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

See Also collect | factor | horner | simple | simplify | syms

6-53

ezcontour

Purpose Contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a symbolic
expression that represents a mathematical function of two variables,
such as x and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezcontour(u^2 - v^3,[0,1],[3,6]) plots the
contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezcontour automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two
variables, x and y.

f x y x e
x

x y e ex y x y x(,) () () (= − − − −⎛
⎝⎜

⎞
⎠⎟

−− − + − − − +3 1 10
5

1
3

2 2 1 2 3 5 2 2 1)) .
2 2−y

ezcontour requires a sym argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function
is represented by the symbolic expression

6-54

ezcontour

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
- 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontour along with a domain ranging from -3 to 3
and specify a computational grid of 49-by-49.

ezcontour(f,[-3,3],49)

6-55

ezcontour

In this particular case, the title is too long to fit at the top of the graph
so MATLAB abbreviates the string.

See Also contour | ezcontourf | ezmesh | ezmeshc | ezplot | ezplot3 |
ezpolar | ezsurf | ezsurfc

6-56

ezcontourf

Purpose Filled contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontourf(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a sym that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezcontourf(u^2 - v^3,[0,1],[3,6]) plots the
contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two
variables, x and y.

f x y x e
x

x y e ex y x y x(,) () () (= − − − −⎛
⎝⎜

⎞
⎠⎟

−− − + − − − +3 1 10
5

1
3

2 2 1 2 3 5 2 2 1)) .
2 2−y

ezcontourf requires a sym argument that expresses this function
using MATLAB syntax to represent exponents, natural logs, etc. This
function is represented by the symbolic expression

6-57

ezcontourf

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
- 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontourf along with a domain ranging from -3 to
3 and specify a grid of 49-by-49.

ezcontourf(f,[-3,3],49)

6-58

ezcontourf

In this particular case, the title is too long to fit at the top of the graph
so MATLAB abbreviates the string.

See Also contourf | ezcontour | ezmesh | ezmeshc | ezplot | ezplot3 |
ezpolar | ezsurf | ezsurfc

6-59

ezmesh

Purpose 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f, domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax])
ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description ezmesh(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezmesh(f, domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezmesh(u^2 - v^3,[0,1],[3,6]) plots u2 - v3

over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z =
z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or
ezmesh(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain.

6-60

ezmesh

Examples This example visualizes the function,

f x y xe x y(,) ,= − −2 2

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color.

syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])

6-61

ezmesh

See Also ezcontour | ezcontourf | ezmeshc | ezplot | ezplot3 | ezpolar |
ezsurf | ezsurfc | mesh

6-62

ezmeshc

Purpose Combined mesh and contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax])
ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description ezmeshc(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezmeshc(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z
= z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or
ezmeshc(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain.

6-63

ezmeshc

Examples Create a mesh/contour graph of the expression,

f x y
y

x y
(,) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π.

syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = –65 and elevation = 26).

6-64

ezmeshc

See Also ezcontour | ezcontourf | ezmesh | ezplot | ezplot3 | ezpolar |
ezsurf | ezsurfc | meshc

6-65

ezplot

Purpose Function plotter

Syntax ezplot(f)
ezplot(f,[xmin xmax])
ezplot(f,[xmin xmax], fign)
ezplot(f,[xmin, xmax, ymin, ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure)

Description ezplot(f) plots the expression f = f(x) over the default domain
–2π < x < 2π.

ezplot(f,[xmin xmax]) plots f = f(x) over the specified domain. It
opens and displays the result in a window labeled Figure No. 1. If
any plot windows are already open, ezplot displays the result in the
highest numbered window.

ezplot(f,[xmin xmax], fign) opens (if necessary) and displays the
plot in the window labeled fign.

For implicitly defined functions, f = f(x,y).

ezplot(f) plots f(x,y) = 0 over the default domain –2π < x < 2π,
–2π < y < 2π.

ezplot(f,[xmin, xmax, ymin, ymax]) plots f(x,y) = 0 over xmin < x <
xmax and ymin < y < ymax.

ezplot(f,[min,max])plots f(x,y) = 0 over min < x < max and min < y <
max.

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezplot(u^2 - v^2 - 1,[-3,2,-2,3]) plots
u2 – v2 – 1 = 0 over –3 < u < 2, –2 < v < 3.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and
y = y(t) over the default domain 0 < t < 2π.

6-66

ezplot

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t
< tmax.

ezplot(...,figure) plots the given function over the specified domain
in the figure window identified by the handle figure.

Algorithms If you do not specify a plot range, ezplot samples the function between
-2*pi and 2*pi and selects a subinterval where the variation is
significant as the plot domain. For the range, ezplot omits extreme
values associated with singularities.

Examples This example plots the implicitly defined function,

x2 - y4 = 0

over the domain [–2π, 2π].

syms x y
ezplot(x^2-y^4)

6-67

ezplot

The following statements

syms x
ezplot(erf(x))
grid

plot a graph of the error function.

6-68

ezplot

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot3 | ezpolar |
ezsurf | ezsurfc | plot

6-69

ezplot3

Purpose 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t)
over the default domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z =
z(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

Examples This example plots the parametric curve, x = sin(t), y = cos(t), z = t over
the domain [0, 6π].

syms t;
ezplot3(sin(t), cos(t), t,[0,6*pi])

6-70

ezplot3

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar |
ezsurf | ezsurfc | plot3

6-71

ezpolar

Purpose Polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f, [a, b])

Description ezpolar(f) plots the polar curve r = f(θ) over the default domain
0 < θ < 2π.

ezpolar(f, [a, b]) plots f for a < θ < b.

Examples This example creates a polar plot of the function,

1 + cos(t)

over the domain [0, 2π].

syms t
ezpolar(1 + cos(t))

6-72

ezpolar

6-73

ezsurf

Purpose 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax])
ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')

ezsurf(f) plots over the default domain –2π < x < 2π, –2π < y < 2π.
MATLAB software chooses the computational grid according to the
amount of variation that occurs; if the function f is not defined (singular)
for points on the grid, then these points are not plotted.

ezsurf(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezsurf(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z =
z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or
ezsurf(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots f over a disk centered on the domain.

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which MATLAB does not plot).
This example illustrates this filtering of singularities/discontinuous
points by graphing the function,

6-74

ezsurf

f(x,y) = real(atan(x + iy))

over the default domain –2π < x < 2π, –2π < y < 2π.

syms x y
ezsurf(real(atan(x+i*y)))

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

6-75

ezsurf

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar |
ezsurfc | surf

6-76

ezsurfc

Purpose Combined surface and contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax])
ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')

Description ezsurfc(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezsurfc(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z
= z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or
ezsurfc(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

6-77

ezsurfc

Examples Create a surface/contour plot of the expression,

f x y
y

x y
(,) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π, with a computational grid
of size 35-by-35

syms x y
ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65 and elevation = 26).

6-78

ezsurfc

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar |
ezsurf | surfc

6-79

factor

Purpose Factorization

Syntax factor(X)

Description factor(X) can take a positive integer, an array of symbolic expressions,
or an array of symbolic integers as an argument. If N is a positive
integer, factor(N) returns the prime factorization of N.

If S is a matrix of polynomials or integers, factor(S) factors each
element. If any element of an integer array has more than 16 digits,
you must use sym to create that element, for example, sym('N').

Examples Factorize the two-variable expression:

syms x y;
factor(x^3-y^3)

The result is:

ans =
(x - y)*(x^2 + x*y + y^2)

Factorize the expressions that form a vector:

syms a b;
factor([a^2 - b^2, a^3 + b^3])

The result is:

ans =
[(a - b)*(a + b), (a + b)*(a^2 - a*b + b^2)]

Factorize the symbolic number:

factor(sym('12345678901234567890'))

The result is:

ans =

6-80

factor

2*3^2*5*101*3541*3607*3803*27961

See Also collect | expand | horner | simplify | simple

6-81

feval

Purpose Evaluate MuPAD expressions

Syntax result = feval(symengine,F,x1,...,xn)
[result,status] = feval(symengine,F,x1,...,xn)

Description result = feval(symengine,F,x1,...,xn) evaluates F, which is
either a MuPAD function name or a symbolic object, with arguments
x1,...,xn, with result a symbolic object.

[result,status] = feval(symengine,F,x1,...,xn) returns the
error status in status, and the error message in result if status is
nonzero. If status is 0, result is a symbolic object. Otherwise, result
is a string.

Examples syms a b c x
p = a*x^2+b*x+c;
feval(symengine,'polylib::discrim', p, x)

ans =
b^2 - 4*a*c

Alternatively, the same calculation based on variables not defined in
the MATLAB workspace is:

feval(symengine,'polylib::discrim', 'a*x^2
+ b*x + c', 'x')

ans =
b^2 - 4*a*c

Do not use feval to access the MuPAD log function that represents the
logarithm to an arbitrary base. The feval command evaluates log as
the natural logarithm (the appropriate MuPAD function is ln):

feval(symengine,'log', 'E')

ans =
1

6-82

feval

Evaluating log with two parameters results in the following error:

feval(symengine,'log', '10', '10')

??? Error using ==> mupadengine.mupadengine>mupadengine.feval at 163

Error: wrong no of args [ln]

See Also doc | evalin

How To • “Calling Built-In MuPAD Functions from the MATLAB Command
Window” on page 4-40

6-83

findsym

Purpose Determine variables in symbolic expression or matrix

Note findsym is not recommended. Use symvar instead.

Syntax findsym(S)
findsym(S, n)

Description findsym(S) for a symbolic expression or matrix S, returns all symbolic
variables in S in lexicographical order, separated by commas. If S does
not contain any variables, findsym returns an empty string.

findsym(S, n) returns the n variables alphabetically closest to x:

1 The variables are sorted by the first letters in their names. The
ordering is x y w z v u ... a X Y W Z V U ... A. The name of a symbolic
variable cannot begin with a number.

2 For all subsequent letters the ordering is alphabetical, with
all uppercase letters having precedence over lowercase:
0 1 ... 9 A B ... Z a b ...z.

findsym(S) can return variables in different order thanfindsym(S, n).

See Also symvar

6-84

finverse

Purpose Functional inverse

Syntax g = finverse(f)
g = finverse(f,v)

Description g = finverse(f) returns the functional inverse of f. f is a scalar sym
representing a function of one symbolic variable, say x. Then g is a
scalar sym that satisfies f(g(x)) = x. That is, finverse(f) returns f–1,
provided f–1 exists.

g = finverse(f,v) uses the symbolic variable v, where v is a sym, as
the independent variable. Then g is a scalar sym that satisfies f(g(v))
= v. Use this form when f contains more than one symbolic variable.

Examples Compute functional inverse for the trigonometric function:

syms x u v;
finverse(1/tan(x))

The result is:

ans =
atan(1/x)

Compute functional inverse for the exponent function:

finverse(exp(u - 2*v), u)

The result is:

ans =
2*v + log(u)

See Also compose | syms

6-85

fix

Purpose Round toward zero

Syntax fix(X)

Description fix(X) is the matrix of the integer parts of X.

fix(X) = floor(X) if X is positive and ceil(X) if X is negative.

See Also round | ceil | floor | frac

6-86

floor

Purpose Round symbolic matrix toward negative infinity

Syntax floor(X)

Description floor(X) is the matrix of the greatest integers less than or equal to X.

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also round | ceil | fix | frac

6-87

fortran

Purpose Fortran representation of symbolic expression

Syntax fortran(S)
fortran(S,'file',fileName)

Description fortran(S) returns the Fortran code equivalent to the expression S.

fortran(S,'file',fileName) writes an “optimized” Fortran
code fragment that evaluates the symbolic expression S to the file
named fileName. “Optimized” means intermediate variables are
automatically generated in order to simplify the code. MATLAB
generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32.

Examples The statements

syms x
f = taylor(log(1+x));
fortran(f)

return

ans =

t0 = x-x**2*(1.0D0/2.0D0)+x**3*(1.0D0/3.0D0)-x**4*(1.0D0/4.0D0)+x*

+*5*(1.0D0/5.0D0)

The statements

H = sym(hilb(3));
fortran(H)

return

ans =
H(1,1) = 1.0D0
H(1,2) = 1.0D0/2.0D0
H(1,3) = 1.0D0/3.0D0
H(2,1) = 1.0D0/2.0D0

6-88

fortran

H(2,2) = 1.0D0/3.0D0
H(2,3) = 1.0D0/4.0D0
H(3,1) = 1.0D0/3.0D0
H(3,2) = 1.0D0/4.0D0
H(3,3) = 1.0D0/5.0D0

The statements

syms x
z = exp(-exp(-x));
fortran(diff(z,3),'file','fortrantest');

return a file named fortrantest containing the following:

t7 = exp(-x)
t8 = exp(-t7)
t0 = t8*exp(x*(-2))*(-3)+t8*exp(x*(-3))+t7*t8

See Also ccode | latex | matlabFunction | pretty

How To • “Generating Code from Symbolic Expressions” on page 3-134

6-89

fourier

Purpose Fourier integral transform

Syntax F = fourier(f)
F = fourier(f,v)
F = fourier(f,u,v)

Description F = fourier(f) is the Fourier transform of the symbolic scalar f
with default independent variable x. The default return is a function
of w. The Fourier transform is applied to a function of x and returns
a function of w.

f f x F F w= ⇒ =() ()

If f = f(w), fourier returns a function of t.

F = F(t)

By definition,

F w f x e dxiwx() ()= −

−∞

∞

∫

where x is the symbolic variable in f as determined by symvar.

F = fourier(f,v) makes F a function of the symbol v instead of the
default w.

F v f x e dxivx() ()= −

−∞

∞

∫

F = fourier(f,u,v) makes f a function of u and F a function of v
instead of the default variables x and w, respectively.

F v f u e duivu() ()= −

−∞

∞

∫

6-90

fourier

Examples
Fourier Transform MATLAB Commands

f x e x() = − 2

F f w f x e dxixw[] = −

−∞

∞

∫() ()

=
−

 e
w2 4/

syms x;
f = exp(-x^2);
fourier(f)

returns

ans =
pi^(1/2)/exp(w^2/4)

g w e w() = −

F g t g w e dwitw[] = −

−∞

∞

∫() ()

=
+
2

1 2t

syms w;
g = exp(-abs(w));
fourier(g)

returns

ans =
2/(v^2 + 1)

f x xe x() = −

F f u f x e dxixu[] = −

−∞

∞

∫() ()

= −
+
4

1 2 2
iu

u()

syms x u;
f = x*exp(-abs(x));
fourier(f,u)

returns

ans =
-(u*4*i)/(u^2 + 1)^2

f x v e x
x

v v
v(,) ,

sin

=
− 2

 real

F f v u f x v e dvivu() () (,)[] = −

−∞

∞

∫

syms v u;
syms x real;
f = exp(-x^2*abs(v))*sin(v)/v;
fourier(f,v,u)

returns

6-91

fourier

Fourier Transform MATLAB Commands

= − − + +
arc arctan tan

u

x

u

x

1 1
2 2

ans =
piecewise([x <> 0,...
atan((u + 1)/x^2)...
- atan((u - 1)/x^2)])

See Also ifourier | laplace | ztrans

6-92

frac

Purpose Symbolic matrix element-wise fractional parts

Syntax frac(X)

Description frac(X) is the matrix of the fractional parts of the elements: frac(X)
= X - fix(X).

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also round | ceil | floor | fix

6-93

funtool

Purpose Function calculator

Syntax funtool

Description funtool is a visual function calculator that manipulates and displays
functions of one variable. At the click of a button, for example, funtool
draws a graph representing the sum, product, difference, or ratio of two
functions that you specify. funtool includes a function memory that
allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, f(x) = x
and g(x) = 1. The graphs plot the functions over the domain [-2*pi,
2*pi]. funtool also displays a control panel that lets you save, retrieve,
redefine, combine, and transform f and g.

6-94

funtool

Text Fields

The top of the control panel contains a group of editable text fields.

f= Displays a symbolic expression representing f. Edit
this field to redefine f.

g= Displays a symbolic expression representing g. Edit
this field to redefine g.

6-95

funtool

x= Displays the domain used to plot f and g. Edit this
field to specify a different domain.

a= Displays a constant factor used to modify f (see
button descriptions in the next section). Edit this
field to change the value of the constant factor.

funtool redraws f and g to reflect any changes you make to the
contents of the control panel’s text fields.

Control Buttons

The bottom part of the control panel contains an array of buttons that
transform f and perform other operations.

The first row of control buttons replaces f with various transformations
of f.

df/dx Derivative of f

int f Integral of f

simple f Simplified form of f, if possible

num f Numerator of f

den f Denominator of f

1/f Reciprocal of f

finv Inverse of f

The operators intf and finv may fail if the corresponding symbolic
expressions do not exist in closed form.

The second row of buttons translates and scales f and the domain of f
by a constant factor. To specify the factor, enter its value in the field
labeled a= on the calculator control panel. The operations are

f+a Replaces f(x) by f(x) + a.

f-a Replaces f(x) by f(x) - a.

6-96

funtool

f*a Replaces f(x) by f(x) * a.

f/a Replaces f(x) by f(x) / a.

f^a Replaces f(x) by f(x) ^ a.

f(x+a) Replaces f(x) by f(x + a).

f(x*a) Replaces f(x) by f(x * a).

The first four buttons of the third row replace f with a combination
of f and g.

f+g Replaces f(x) by f(x) + g(x).

f-g Replaces f(x) by f(x)-g(x).

f*g Replaces f(x) by f(x) * g(x).

f/g Replaces f(x) by f(x) / g(x).

The remaining buttons on the third row interchange f and g.

g=f Replaces g with f.

swap Replaces f with g and g with f.

The first three buttons in the fourth row allow you to store and retrieve
functions from the calculator’s function memory.

Insert Adds f to the end of the list of stored functions.

Cycle Replaces f with the next item on the function list.

Delete Deletes f from the list of stored functions.

The other four buttons on the fourth row perform miscellaneous
functions:

Reset Resets the calculator to its initial state.

Help Displays the online help for the calculator.

6-97

funtool

Demo Runs a short demo of the calculator.

Close Closes the calculator’s windows.

See Also ezplot | syms

6-98

gamma

Purpose Gamma function

Syntax gamma(x)
gamma(A)

Description gamma(x) returns the gamma function of a symbolic variable or
symbolic expression x.

gamma(A) returns the gamma function of the elements of a symbolic
vector or a symbolic matrix A.

Input
Arguments

x

A symbolic variable or a symbolic expression

A

A vector or a matrix of symbolic variables or expressions

Definitions gamma Function

The following integral defines the gamma function:

Γ z t e dtz t() = − −
∞

∫ 1

0

.

Examples Differentiate the gamma function, and then substitute the variable
t with the value 1:

syms t
u = diff(gamma(t^3 + 1))
subs(u, 1)

u =
3*t^2*gamma(t^3 + 1)*psi(t^3 + 1)

ans =
1.2684

6-99

gamma

Compute the limit of the following expression that involves the gamma
function:

syms x;
limit(x/gamma(x), x, inf)

ans =
0

Simplify the following expression:

syms x;
simplify(gamma(x)*gamma(1 - x))

ans =
pi/sin(pi*x)

See Also mfun | mfunlist

6-100

getVar

Purpose Get variable from MuPAD notebook

Syntax y = getVar(nb,'z')

Description y = getVar(nb,'z') assigns the symbolic variable z in the MuPAD
notebook nb to a symbolic variable y in the MATLAB workspace.

Examples Start a new MuPAD notebook and define a handle mpnb to that
notebook:

mpnb = mupad;

In the MuPAD notebook, enter the command f:=x^2. This command
creates the variable f and assigns the value x^2 to this variable. At this
point, the variable and its value exist only in MuPAD. Now, return to
the MATLAB Command Window and use the getVar function:

f = getVar(mpnb,'f')

After you use getVar, the variable f appears in the MATLAB
workspace. The value of the variable f is x^2.

See Also mupad | setVar

6-101

heaviside

Purpose Compute Heaviside step function

Syntax heaviside(x)

Description heaviside(x) has the value 0 for x < 0, 1 for x > 0, and 0.5 for x = 0.

Examples For x < 0 the function heaviside(x) returns 0:

heaviside(sym(-3))

ans =
0

For x > 0 the function, heaviside(x) returns 1:

heaviside(sym(3))

ans =
1

For x = 0 the function, heaviside(x) returns 1/2:

heaviside(sym(0))

ans =
1/2

For numeric x = 0 the function, heaviside(x) returns the numeric
result:

heaviside(0)

ans =
0.5000

See Also dirac

6-102

horner

Purpose Horner nested polynomial representation

Syntax horner(P)

Description Suppose P is a matrix of symbolic polynomials. horner(P) transforms
each element of P into its Horner, or nested, representation.

Examples Find nested polynomial representation of the polynomial:

syms x
horner(x^3-6*x^2+11*x-6)

The result is

ans =
x*(x*(x - 6) + 11) - 6

Find nested polynomial representation for the polynomials that form a
vector:

syms x y
horner([x^2+x;y^3-2*y])

The result is:

ans =
x*(x + 1)

y*(y^2 - 2)

See Also expand | factor | simple | simplify | syms

6-103

hypergeom

Purpose Generalized hypergeometric

Syntax hypergeom(n,d,z)

Description hypergeom(n,d,z) is the generalized hypergeometric function F(n, d,
z), also known as the Barnes extended hypergeometric function and
denoted by jFk where j = length(n) and k = length(d). For scalar a,
b, and c, hypergeom([a,b],c,z) is the Gauss hypergeometric function

2F1(a,b;c;z).

The definition by a formal power series is

F n d z
C

C
z
k

n k

d kk

k
(, ,)

!
,,

,
= ⋅

=

∞

∑
0

where

C
v k

vv k
j

jj

v

,
()

()
.=

+

=
∏

Γ
Γ1

Either of the first two arguments may be a vector providing the
coefficient parameters for a single function evaluation. If the third
argument is a vector, the function is evaluated point-wise. The result
is numeric if all the arguments are numeric and symbolic if any of the
arguments is symbolic.

See Abramowitz and Stegun, Handbook of Mathematical Functions,
Chapter 15.

Examples Compute hypergeometric functions:

syms a z
q = hypergeom([],[],z)
r = hypergeom(1,[],z)
s = hypergeom(a,[],z)

The results are:

6-104

hypergeom

q =
exp(z)

r =
-1/(z - 1)

s =
1/(1 - z)^a

6-105

ifourier

Purpose Inverse Fourier integral transform

Syntax f = ifourier(F)
f = ifourier(F,u)
f = ifourier(F,v,u)

Description f = ifourier(F) is the inverse Fourier transform of the scalar
symbolic object F with default independent variable w. The default
return is a function of x. The inverse Fourier transform is applied to a
function of w and returns a function of x.

F F w f f x= ⇒ =() ().

If F = F(x), ifourier returns a function of t:

f = f(t)

By definition

f x F w e dwiwx() /() () .=
−∞

∞

∫1 2

f = ifourier(F,u) makes f a function of u instead of the default x.

f u F w e dwiwu() /() () .=
−∞

∞

∫1 2

Here u is a scalar symbolic object.

f = ifourier(F,v,u) takes F to be a function of v and f to be a
function of u instead of the default w and x, respectively.

f u F v e dvivu() /() () .=
−∞

∞

∫1 2

6-106

ifourier

Examples
Inverse Fourier Transform MATLAB Commands

f w e w a() /()= − 2 24

F f x f w e dwixw−

−∞

∞
[] = ∫1 1

2
() ()



= −a
e ax


() 2

syms a w real;
f = exp(-w^2/(4*a^2));
F = ifourier(f);
F = simple(F)

returns

F =

abs(a)/(pi^(1/2)*exp(a^2*x^2))

g x e x() = −

F g t g x e dxitx−

−∞

∞
[]() = ∫1 1

2
()

=
+()
1

1 2 t

syms x real;
g = exp(-abs(x));
ifourier(g)

returns

ans =
1/(pi*(t^2 + 1))

f w e w() = −−2 1

F f t f w e dwitw−

−∞

∞
[]() = ∫1 1

2
()

= − +
+

dirac()
()

t
t

2

1 2

syms w t real;
f = 2*exp(-abs(w)) - 1;
simplify(ifourier(f,t))

returns

ans =

2/(pi*(t^2 + 1)) - dirac(t)

See Also fourier | ilaplace | iztrans

6-107

ilaplace

inverse Laplace transform
Purpose Inverse Laplace transform

Syntax F = ilaplace(L)
F = ilaplace(L,y)
F = ilaplace(L,y,x)

Description F = ilaplace(L) computes the inverse Laplace transform of the
symbolic expression L. This syntax assumes that L is a function of the
variable s, and the returned value F is a function of t.

L L s F F t= ⇒ =() ()

If L = L(t), ilaplace returns a function of x.

F = F(x)

By definition, the inverse Laplace transform is

F t
i

L s e dsst

c i

c i

() () ,=
− ∞

+ ∞

∫1
2

where c is a real number selected so that all singularities of L(s) are to
the left of the line s = c, i.

F = ilaplace(L,y) computes the inverse Laplace transform F as a
function of y instead of the default variable t.

F y
i

L y e dssy

c i

c i

() ()=
− ∞

+ ∞

∫1
2

F = ilaplace(L,y,x) computes the inverse Laplace transform and lets
you specify that F is a function of x and L is a function of y.

6-108

ilaplace

F x
i

L y e dyxy

c i

c i

() ()=
− ∞

+ ∞

∫1
2

Examples
Inverse Laplace Transform MATLAB Command

f s
s

() = 1
2

L f
i

f s e dsst

c ivo

c ivo
−

−

+
[] = ∫1 1

2
()

= t

syms s;
f = 1/s^2;
ilaplace(f)

returns

ans =
t

g t
t a

() =
−()
1

2

L g
i

g t e dtxt

c i

c i
−

− ∞

+ ∞
[] = ∫1 1

2
()

= xeax

syms a t;
g = 1/(t-a)^2;
ilaplace(g)

returns

ans =
x*exp(a*x)

f u
u a

() =
−
1

2 2

L f
i

g u e duxu

c i

c i
−

− ∞

+ ∞
[] = ∫1 1

2
()

=
()sinh xa

a

syms x u;
syms a real;
f = 1/(u^2-a^2);
simplify(ilaplace(f,x))

returns

ans =
sinh(a*x)/a

6-109

ilaplace

See Also ifourier | iztrans | laplace

6-110

imag

Purpose Imaginary part of complex number

Syntax imag(Z)

Description imag(Z) is the imaginary part of a symbolic Z.

See Also conj | real

6-111

int

Purpose Integrate symbolic expression

Syntax int(expr)
int(expr, v)
int(expr, a, b)
int(expr, v, a, b)

Description int(expr) returns the indefinite integral of expr with respect to its
symbolic variable as defined by symvar.

int(expr, v) returns the indefinite integral of expr with respect to
the symbolic scalar variable v.

int(expr, a, b) returns the definite integral from a to b of expr
with respect to the default symbolic variable. a and b are symbolic or
double scalars.

int(expr, v, a, b) returns the definite integral of expr with respect
to v from a to b.

Examples Find indefinite integral of the following single-variable expression:

syms x;
int(-2*x/(1 + x^2)^2)

The result is:

ans =
1/(x^2 + 1)

Find indefinite integral of the following multivariable expression with
respect to z:

syms x z;
int(x/(1 + z^2), z)

The result is:

6-112

int

ans =
x*atan(z)

Integral the following expression from 0 to 1:

syms x;
int(x*log(1 + x), 0, 1)

The result is:

ans =
1/4

Integral the following expression from sin(t) to 1:

syms x t;
int(2*x, sin(t), 1)

The result is:

ans =
cos(t)^2

Find indefinite integrals for the expressions listed as the elements of a
matrix:

syms x t z;
alpha = sym('alpha');
int([exp(t), exp(alpha*t)])

The result is:

ans =
[exp(t), exp(alpha*t)/alpha]

6-113

int

See Also diff | symsum | symvar

6-114

int8

Purpose Convert symbolic matrix to signed integers

Syntax int8(S)
int16(S)
int32(S)
int64(S)

Description int8(S) converts a symbolic matrix S to a matrix of signed 8-bit
integers.

int16(S) converts S to a matrix of signed 16-bit integers.

int32(S) converts S to a matrix of signed 32-bit integers.

int64(S) converts S to a matrix of signed 64-bit integers.

Note The output of int8, int16, int32, and int64 does not have data
type symbolic.

The following table summarizes the output of these four functions.

Function Output Range
Output
Type

Bytes
per
Element

Output
Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed 16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed 32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit
integer

8 int64

See Also sym | vpa | single | double | uint8 | uint16 | uint32 | uint64

6-115

inv

Purpose Compute symbolic matrix inverse

Syntax R = inv(A)

Description R = inv(A) returns inverse of the symbolic matrix A.

Examples Compute the inverse of the following matrix of symbolic numbers:

A = sym([2,-1,0;-1,2,-1;0,-1,2]);
inv(A)

The result is:

ans =
[3/4, 1/2, 1/4]
[1/2, 1, 1/2]
[1/4, 1/2, 3/4]

Compute the inverse of the following symbolic matrix:

syms a b c d
A = [a b; c d];
inv(A)

The result is:

ans =
[d/(a*d - b*c), -b/(a*d - b*c)]
[-c/(a*d - b*c), a/(a*d - b*c)]

Compute the inverse of the symbolic Hilbert matrix:

inv(sym(hilb(4)))

The result is:

6-116

inv

ans =
[16, -120, 240, -140]
[-120, 1200, -2700, 1680]
[240, -2700, 6480, -4200]
[-140, 1680, -4200, 2800]

See Also eig | det | rank

6-117

iztrans

inverse z-transform
Purpose Inverse z-transform

Syntax f = iztrans(F)
f = iztrans(F,k)
f = iztrans(F,w,k)

Description f = iztrans(F) computes the inverse z-transform of the symbolic
expression F. This syntax assumes that F is a function of the variable
z, and the returned value f is a function of n.

f n
i

F z z dz nn

z R

() () , , ,...= =−

=
∫1

2
1 21



where R is a positive number, such that the function F(z) is analytic
on and outside the circle |z| = R.

If F = F(n), iztrans computes the inverse z-transform f as a function
of the variable k.

f = f(k)

f = iztrans(F,k) computes the inverse z-transform f as a function of
the variable k instead of the default variable n.

f = iztrans(F,w,k) computes the inverse z-transform and lets you
specify that F is a function of w and f is a function of k.

F F w f f k= ⇒ =() ()

6-118

iztrans

Examples
Inverse Z-Transform MATLAB Operation

f z
z

z
()

()
=

−
2

2 2

Z f
i

f s z dzn

z R

− −

=

[] = ∫1 11
2

()

= n2n

syms z
f = 2*z/(z-2)^2;
iztrans(f)

returns

ans =
2^n + 2^n*(n - 1)

g n
n n

n n
()

()= +
+ +

1

2 12

Z g
i

g n n dnk

n R

− −

=

= ∫1 11
2

()

= –1k

syms n
g = n*(n+1)/(n^2+2*n+1);
iztrans(g)

returns

ans =
(-1)^k

f z
z

z a
() =

−

Z f
i

f z z dzk

z R

− −

=

[] = ∫1 11
2

()

= ak if a ≠ 0

syms z a k
f = z/(z-a);
simplify(iztrans(f,k))

returns

ans =
piecewise([a <> 0,
a^k])

See Also ifourier | ilaplace | ztrans

6-119

jacobian

Jacobian matrix
Purpose Jacobian matrix

Syntax jacobian(f, v)

Description jacobian(f, v) computes the Jacobian matrix of the scalar or vector f

with respect to v. The (i, j)-th entry of the result is ∂ ∂f i v j() / () . If f
is a scalar, the Jacobian matrix of f is the gradient of f. If v is a scalar,
the result equals to diff(f, v).

Examples Compute the Jacobian matrix for each of these vectors:

syms x y z
f = [x*y*z; y; x + z];
v = [x, y, z];
R = jacobian(f, v)
b = jacobian(x + z, v)

The results are:

R =
[y*z, x*z, x*y]
[0, 1, 0]
[1, 0, 1]

b =
[1, 0, 1]

See Also diff

6-120

jordan

Jordan form
Purpose Jordan form of matrix

Syntax J = jordan(A)
[V, J] = jordan(A)

Description J = jordan(A) computes the Jordan canonical form (also called Jordan
normal form) of a symbolic or numeric matrix A. The Jordan form of a
numeric matrix is extremely sensitive to numerical errors. To compute
Jordan form of a matrix, represent the elements of the matrix by
integers or ratios of small integers, if possible.

[V, J] = jordan(A) computes the Jordan form J and the similarity
transform V. The matrix V contains the generalized eigenvectors of A as
columns, and V\A*V = J.

Examples Compute the Jordan form and the similarity transform for this numeric
matrix. Verify that the resulting matrix V satisfies the condition V\A*V
= J:

A = [1 -3 -2; -1 1 -1; 2 4 5]
[V, J] = jordan(A)
V\A*V

The result is:

A =
1 -3 -2

-1 1 -1
2 4 5

V =
-1 1 -1
-1 0 0
2 0 1

J =

6-121

jordan

2 1 0
0 2 0
0 0 3

ans =
2 1 0
0 2 0
0 0 3

See Also eig | inv | poly

6-122

lambertw

Purpose Lambert W function

Syntax W = lambertw(X)
W = lambertw(K,X)

Description W = lambertw(X) evaluates the Lambert W function at the elements
of X, a numeric matrix or a symbolic matrix. The Lambert W function
solves the equation

wew = x

for w as a function of x.

W = lambertw(K,X) is the K-th branch of this multi-valued function.

Examples Compute the Lambert W function:

lambertw([0 -exp(-1); pi 1])

The result is:

ans =
0 -1.0000

1.0737 0.5671

The statements

syms x y
lambertw([0 x;1 y])

return

ans =
[0, lambertw(0, x)]
[lambertw(0, 1), lambertw(0, y)]

6-123

lambertw

References [1] Corless, R.M, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey, Lambert’s
W Function in Maple™, Technical Report, Dept. of Applied Math., Univ.
of Western Ontario, London, Ontario, Canada.

[2] Corless, R.M, Gonnet, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey,
On Lambert’s W Function, Technical Report, Dept. of Applied Math.,
Univ. of Western Ontario, London, Ontario, Canada.

Both papers are available by anonymous FTP from

cs-archive.uwaterloo.ca

6-124

laplace

Laplace transform
Purpose Laplace transform

Syntax laplace(F)
laplace(F, t)
laplace(F, w, z)

Description L = laplace(F) computes the Laplace transform of the symbolic
expression F. This syntax assumes that F is a function of the variable
t, and the returned value L as a function of s.

F F t L L s= ⇒ =() ()

If F = F(s), laplace returns a function of t.

L = L(t)

By definition, the Laplace transform is

L s F t e dtst() ()= −
∞

∫
0

L = laplace(F,t) computes the Laplace transform L as a function of t
instead of the default variable s.

L t F x e dxtx() ()= −
∞

∫
0

L = laplace(F,w,z) computes the Laplace transform L and lets you
specify that L is a function of z and F is a function of w.

L z F w e dwzw() ()= −
∞

∫
0

6-125

laplace

Examples
Laplace Transform MATLAB Command

f(t) = t4

L f f t e dtts[] = −
∞

∫ ()
0

= 24
5s

syms t;
f = t^4;
laplace(f)

returns

ans =
24/s^5

g s
s

() = 1

L g t g s e dsst[]() = −
∞

∫ ()
0

= 
t

syms s;
g = 1/sqrt(s);
laplace(g)

returns

ans =
pi^(1/2)/t^(1/2)

f(t) = e–at

L f x f t e dttx[] = −
∞

∫() ()
0

=
+
1

x a

syms t a x;
f = exp(-a*t);
laplace(f,x)

returns

ans =
1/(a + x)

See Also fourier | ilaplace | ztrans

6-126

latex

Purpose LaTeX representation of symbolic expression

Syntax latex(S)

Description latex(S) returns the LaTeX representation of the symbolic expression
S.

Examples The statements

syms x
f = taylor(log(1+x));
latex(f)

return

ans =

\frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x

The statements

H = sym(hilb(3));
latex(H)

return

ans =
\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3}\\...
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\...
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array}\right)

The statements

syms t;
alpha = sym('alpha');
A = [alpha t alpha*t];
latex(A)

6-127

latex

return

ans =

\left(\begin{array}{ccc} \mathrm{alpha} & t & \mathrm{alpha}\, t...

\end{array}\right)

You can use the latex command to annotate graphs:

syms x
f = taylor(log(1+x));
ezplot(f)
hold on
title(['$' latex(f) '$'],'interpreter','latex')
hold off

See Also pretty | ccode | fortran

6-128

limit

Purpose Compute limit of symbolic expression

Syntax limit(expr, x, a)
limit(expr, a)
limit(expr)
limit(expr, x, a, 'left')
limit(expr, x, a, 'right')

Description limit(expr, x, a) computes bidirectional limit of the symbolic
expression expr when x approaches a.

limit(expr, a) computes bidirectional limit of the symbolic expression
expr when the default variable approaches a.

limit(expr) computes bidirectional limit of the symbolic expression
expr when the default variable approaches 0.

limit(expr, x, a, 'left') computes the limit of the symbolic
expression expr when x approaches a from the left.

limit(expr, x, a, 'right') computes the limit of the symbolic
expression expr when x approaches a from the right.

Examples Compute bidirectional limits for the following expressions:

syms x h;
limit(sin(x)/x)
limit((sin(x + h) - sin(x))/h, h, 0)

The results are

ans =
1

ans =
cos(x)

Compute the limits from the left and right for the following expressions:

6-129

limit

syms x;
limit(1/x, x, 0, 'right')
limit(1/x, x, 0, 'left')

The results are

ans =
Inf

ans =
-Inf

Compute the limit for the functions presented as elements of a vector:

syms x a;
v = [(1 + a/x)^x, exp(-x)];
limit(v, x, inf)

The result is

ans =
[exp(a), 0]

See Also diff | taylor

6-130

log10

Purpose Logarithm base 10 of entries of symbolic matrix

Syntax Y = log10(X)

Description Y = log10(X) returns the logarithm to the base 10 of X. If X is a matrix,
Y is a matrix of the same size, each entry of which is the logarithm of
the corresponding entry of X.

See Also log2

6-131

log2

Purpose Logarithm base 2 of entries of symbolic matrix

Syntax Y = log2(X)

Description Y = log2(X) returns the logarithm to the base 2 of X. If X is a matrix, Y
is a matrix of the same size, each entry of which is the logarithm of the
corresponding entry of X.

See Also log10

6-132

matlabFunction

Purpose Convert symbolic expression to function handle or file

Syntax g = matlabFunction(f)
g = matlabFunction(f1,f2,...)
g = matlabFunction(f,param1,value1,...)

Description g = matlabFunction(f) converts the symbolic expression f to a
MATLAB function with the handle g.

g = matlabFunction(f1,f2,...) converts a list of the symbolic
expressions f1, f2, ... to a MATLAB function with multiple outputs.
The function handle is g.

g = matlabFunction(f,param1,value1,...) converts the symbolic
expression f to a MATLAB function with the handle g. The command
accepts the following options for parameter/value pairs:

• Parameter = 'file' allows you to generate a file with optimized
code. The generated file can accept double or matrix arguments
and evaluate the symbolic expression applied to the arguments.
Optimized means intermediate variables are automatically generated
to simplify or speed the code. MATLAB generates intermediate
variables as a lowercase letter t followed by an automatically
generated number, for example t32. The value of this parameter
must be a string representing the path to the file. If the string is
empty, matlabFunction generates an anonymous function. If the
string does not end in .m, the function appends .m.

• Parameter = 'outputs' allows you to set the names of the output
variables. value should be a cell array of strings. The default
names of output variables coincide with the names you use calling
matlabFunction. If you call matlabFunction using an expression
instead of individual variables, the default names of output variables
consist of the word out followed by the number, for example, out3.

• Parameter = 'vars' allows you to set the order of the input variables
or symbolic vectors in the resulting function handle or the file. The
default order is alphabetical. The value of this parameter must
be either a cell array of strings or symbolic arrays, or a vector of

6-133

matlabFunction

symbolic variables. The number of value entries should equal or
exceed the number of free variables in the symbolic expression f.

Tip To convert a MuPAD expression or function to a MATLAB
function, use f = evalin(symengine,'MuPAD_Expression') or f =
feval(symengine, 'MuPAD_Function',x1,...,xn). matlabFunction
cannot correctly convert some MuPAD expressions to MATLAB
functions. These expressions do not trigger an error message. When
converting a MuPAD expression or function that is not on the MATLAB
vs. MuPAD Expressions list, always check the results of conversion. To
verify the results, execute the resulting function.

Examples Convert the following symbolic expression to a MATLAB function with
the handle ht:

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(sin(r)/r)

ht =
@(x,y)sin(sqrt(x.^2+y.^2)).*1.0./sqrt(x.^2+y.^2)

The following example generates a file:

syms x y z
r = x^2 + y^2 + z^2;
f = matlabFunction(log(r)+r^(-1/2),'file','myfile');

If the file myfile.m already exists in the current folder, matlabFunction
replaces the existing function with the converted symbolic expression.
You can open and edit the resulting file:

function out1 = myfile(x,y,z)
%MYFILE
% OUT1 = MYFILE(X,Y,Z)

6-134

matlabFunction

t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
t5 = t2 + t3 + t4;
out1 = log(t5) + 1.0./sqrt(t5);

If the string is empty, matlabFunction generates an anonymous
function:

syms x y z
r = x^2 + y^2 + z^2;
f = matlabFunction(log(r)+r^(-1/2),'file','')

f =
@(x,y,z)log(x.^2+y.^2+z.^2)+1.0./sqrt(x.^2+y.^2+z.^2)

You can change the order of the input variables:

syms x y z
r = x^2 + y^2 + z^2;
matlabFunction(r, 'file', 'my_function',...
'vars', [y z x]);

The created my_function accepts variables in the required order:

function r = my_function(y,z,x)
%MY_FUNCTION
% R = MY_FUNCTION(Y,Z,X)

r = x.^2 + y.^2 + z.^2;

You can specify that the input arguments are vectors:

syms x y z t
r = (x^2 + y^2 + z^2)*exp(-t);
matlabFunction(r, 'file', 'my_function',...
'vars', {t, [x y z]});

The resulting function operates on vectors:

6-135

matlabFunction

function r = my_function(t,in2)
%MY_FUNCTION
% R = MY_FUNCTION(T,IN2)

x = in2(:,1);
y = in2(:,2);
z = in2(:,3);
r = exp(-t).*(x.^2+y.^2+z.^2);

You can specify the names of the output variables:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'my_function',...
'outputs', {'name1','name2'});

The generated function returns name1 and name2:

function [name1,name2] = my_function(x,y,z)
%MY_FUNCTION
% [NAME1,NAME2] = MY_FUNCTION(X,Y,Z)

t9 = x.^2;
t10 = y.^2;
t11 = z.^2;
name1 = t10 + t11 + t9;
if nargout > 1

name2 = -t10 - t11 + t9;
end

Also, you can convert MuPAD expressions:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'my_function');

6-136

matlabFunction

The created file contains the same expressions written in the MATLAB
language:

function f = my_function(x,y)
%MY_FUNCTION
% F = MY_FUNCTION(X,Y)

f = asin(x) + acos(y);

See Also ccode | fortran | subs | sym2poly | emlBlock

How To • “Generating Code from Symbolic Expressions” on page 3-134

6-137

mfun

Purpose Numeric evaluation of special mathematical function

Syntax mfun('function',par1,par2,par3,par4)

Description mfun('function',par1,par2,par3,par4) numerically evaluates one
of the special mathematical functions listed in “Syntax and Definitions
of mfun Special Functions” on page 3-109. Each par argument is a
numeric quantity corresponding to a parameter for function. You can
use up to four parameters. The last parameter specified can be a matrix,
usually corresponding to X. The dimensions of all other parameters
depend on the specifications for function. You can access parameter
information for mfun functions in “Syntax and Definitions of mfun
Special Functions” on page 6-139.

MuPAD software evaluates function using 16-digit accuracy. Each
element of the result is a MATLAB numeric quantity. Any singularity
in function is returned as NaN.

Examples Evaluate the Fresnel cosine integral:

mfun('FresnelC',0:5)

The result is:

ans =
0 0.7799 0.4883 0.6057 0.4984 0.5636

Evaluate the hyperbolic cosine integral:

mfun('Chi',[3*i 0])

ans =
0.1196 + 1.5708i NaN

See Also mfunlist

6-138

mfunlist

Purpose List special functions for use with mfun

Syntax mfunlist

Description mfunlist lists the special mathematical functions for use with the mfun
function. The following tables describe these special functions.

Syntax
and
Definitions
of mfun
Special
Functions

The following conventions are used in the next table, unless otherwise
indicated in the Arguments column.

x, y real argument

z, z1, z2 complex argument

m, n integer argument

mfun Special Functions

Function
Name Definition mfun Name Arguments

Bernoulli
numbers and
polynomials

Generating functions:

e

e
B x

t
n

xt

t n

n

n−
= ⋅

−

=

∞

∑
1

1

0
()

!

bernoulli(n)

bernoulli(n,t)
n ≥ 0

0 2< <t π

Bessel
functions

BesselI, BesselJ—Bessel
functions of the first kind.
BesselK, BesselY—Bessel
functions of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

v is real.

Beta function
B x y

x y
x y

(,)
() ()
()

= ⋅
+

Γ Γ
Γ

Beta(x,y)

6-139

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Binomial
coefficients

m
n

m
n m n

⎛
⎝⎜

⎞
⎠⎟
=

−()
!

! !

= +
+() − +
Γ

Γ Γ
()

()
m

n m n
1

1 1

binomial(m,n)

Complete
elliptic
integrals

Legendre’s complete elliptic
integrals of the first, second, and
third kind. This definition uses
modulus k. The numerical ellipke
function and the MuPAD functions
for computing elliptic integrals use

the parameter m k= =2 2sin  .

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complete
elliptic
integrals with
complementary
modulus

Associated complete elliptic
integrals of the first, second, and
third kind using complementary
modulus. This definition uses
modulus k. The numerical ellipke
function and the MuPAD functions
for computing elliptic integrals use

the parameter m k= =2 2sin  .

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

6-140

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Complementary
error function
and its iterated
integrals

erfc z e dt erf zt

z

() ()= ⋅ = −−
∞

∫2
1

2



erfc z e z(,)− = ⋅ −1
2 2



erfc n z erfc n t dt
z

(,) (,)= −
∞

∫ 1

erfc(z)

erfc(n,z)

n > 0

Dawson’s
integral F x e e dtx t

x

() = ⋅− ∫
2 2

0

dawson(x)

Digamma
function Ψ Γ Γ

Γ
() ln(())

()
()

x
d
dx

x
x
x

= =
′ Psi(x)

Dilogarithm
integral f x

t
t

dt
x

()
ln()=
−∫ 1

1

dilog(x) x > 1

Error function
erf z e dtt

z

() = −∫2 2

0

erf(z)

Euler
numbers and
polynomials

Generating function for Euler
numbers:

1

0cosh() !t
E

t
nn

n

n
=

=

∞

∑

euler(n)

euler(n,z)

n ≥ 0

t < 
2

6-141

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Exponential
integrals Ei n z

e

t
dt

zt

n
(,) =

−∞

∫
1

Ei x PV
e
t

tx

() = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∞
∫

Ei(n,z)

Ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine
and cosine
integrals

C x t dt
x

() cos= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

S x t dt
x

() sin= ⎛
⎝⎜

⎞
⎠⎟∫ 

2
2

0

FresnelC(x)

FresnelS(x)

Gamma
function Γ()z t e dtz t= − −

∞

∫ 1

0

GAMMA(z)

Harmonic
function h n

k
n

k

n
() ()= = + +

=
∑ 1

1
1

Ψ γ
harmonic(n) n > 0

Hyperbolic sine
and cosine
integrals

Shi z
t

t
dt

z

()
sinh()= ∫

0

Chi z z
t

t
dt

z

() ln()
cosh()= + + −∫γ 1

0

Shi(z)

Chi(z)

6-142

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

(Generalized)
hypergeometric
function F n d z

n k
n

z

d k
d

k

i

i

k

i

j

i

ii

m
k

(, ,)

()
()

()
()

!

=

+ ⋅

+ ⋅

=

=

=

∞ ∏

∏
∑

Γ
Γ

Γ
Γ

1

1

0

where j and m are the number of
terms in n and d, respectively.

hypergeom(n,d,x)

where

n = [n1,n2,...]

d = [d1,d2,...]

n1,n2,...
are real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic
integrals

Legendre’s incomplete elliptic
integrals of the first, second, and
third kind. This definition uses
modulus k. The numerical ellipke
function and the MuPAD functions
for computing elliptic integrals use

the parameter m k= =2 2sin  .

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

0 < x ≤ ∞.

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Incomplete
gamma
function

Γ(,)a z e t dtt a

z

= ⋅− −
∞

∫ 1
GAMMA(z1,z2)

z1 = a
z2 = z

Logarithm of
the gamma
function

lnGAMMA() ln(())z z= Γ lnGAMMA(z)

Logarithmic
integral Li x PV

dt
t

Ei x
x

()
ln

(ln)=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=∫

0

Li(x) x > 1

6-143

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Polygamma
function Ψ Ψ() () ()n

n
z

d
dz

z=

where Ψ()z is the Digamma
function.

Psi(n,z) n ≥ 0

Shifted sine
integral Ssi z Si z() ()= − 

2

Ssi(z)

The following orthogonal polynomials are available using mfun. In all
cases, n is a nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

Gegenbauer G(n,a,x) a is a nonrational
algebraic expression
or a rational number
greater than -1/2.

Hermite H(n,x)

Jacobi P(n,a,b,x) a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x)

6-144

mfunlist

Orthogonal Polynomials (Continued)

Polynomial mfun Name Arguments

Generalized Laguerre L(n,a,x) a is a nonrational
algebraic expression
or a rational number
greater than -1.

Legendre P(n,x)

Examples mfun('H',5,10)

ans =
3041200

mfun('dawson',3.2)

ans =
0.1655

Limitations In general, the accuracy of a function will be lower near its roots and
when its arguments are relatively large.

Running time depends on the specific function and its parameters. In
general, calculations are slower than standard MATLAB calculations.

References [1] Abramowitz, M. and I.A., Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965.

See Also mfun

6-145

mod

Purpose Symbolic matrix element-wise modulus

Syntax C = mod(A, B)

Description C = mod(A, B) for symbolic matrices A and B with integer elements
is the positive remainder in the elementwise division of A by B. For
matrices with polynomial entries, mod(A, B) is applied to the individual
coefficients.

Examples ten = sym('10');
mod(2^ten, ten^3)

ans =
24

syms x
mod(x^3 - 2*x + 999, 10)

ans =
x^3 + 8*x + 9

See Also quorem

6-146

mupad

Purpose Start MuPAD notebook

Syntax mphandle = mupad
mphandle = mupad(file)

Description mphandle = mupad creates a MuPAD notebook, and keeps a handle
(pointer) to the notebook in the variable mphandle. You can use any
variable name you like instead of mphandle.

mphandle = mupad(file) opens the MuPAD notebook or program file
named file and keeps a handle (pointer) to the notebook or program
file in the variable mphandle. This syntax has the functionality
of both openmn and openmu. Also, you can use the argument
file#linktargetname to refer to the particular link target inside a
notebook. In this case, the mupad function opens the MuPAD notebook
or program file (file) and jumps to the beginning of the link target
linktargetname. If there are multiple link targets with the name
linktargetname, the mupad function uses the last linktargetname
occurrence.

Examples To start a new notebook and define a handle mphandle to the notebook,
enter:

mphandle = mupad;

To open an existing notebook named notebook1.mn located in the
current folder, and define a handle mphandle to the notebook, enter:

mphandle = mupad('notebook1.mn');

To open a notebook and jump to a particular location, create a link
target at that location inside a notebook and refer to it when opening
a notebook. For example, if you have the Conclusions section in
notebook1.mn, create a link target named conclusions and refer to it
when opening the notebook. The mupad function opens notebook1.mn
and scroll it to display the Conclusions section:

mphandle = mupad('notebook1.mn#conclusions');

6-147

mupad

For information about creating link targets, see the Formatting and
Exporting MuPAD Documents and Graphics section in the MuPAD
Getting Started documentation.

See Also getVar | mupadwelcome | openmn | openmu | setVar

6-148

mupadwelcome

Purpose Start MuPAD interfaces

Syntax mupadwelcome

Description mupadwelcome opens a window that enables you to start various
MuPAD interfaces:

• Notebook, for performing calculations

• Editor, for writing programs and libraries

• Help, in the First Steps pane

It also enables you to access recent MuPAD files or browse for files.

See Also mupad

6-149

mupadwelcome

How To • “Creating, Opening, and Saving MuPAD Notebooks” on page 4-11

6-150

null

Purpose Form basis for null space of matrix

Syntax Z = null(A)

Description Z = null(A) returns a list of vectors that form the basis for the null
space of a matrix A. The product A*Z is zero. size(Z, 2) is the nullity
of A. If A has full rank, Z is empty.

Examples Find the basis for the null space and the nullity of the magic square of
symbolic numbers. Verify that A*Z is zero:

A = sym(magic(4));
Z = null(A)
nullityOfA = size(Z, 2)
A*Z

The results are:

Z =
-1
-3
3
1

nullityOfA =
1

ans =
0
0
0
0

Find the basis for the null space of the matrix B that has full rank:

B = sym(hilb(3))

6-151

null

Z = null(B)

The result is:

B =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
[empty sym]

See Also rank | rref | size | svd

6-152

numden

Purpose Numerator and denominator

Syntax [N,D] = numden(A)

Description [N,D] = numden(A) converts each element of A to a rational form where
the numerator and denominator are relatively prime polynomials
with integer coefficients. A is a symbolic or a numeric matrix. N is
the symbolic matrix of numerators, and D is the symbolic matrix of
denominators.

Examples Find the numerator and denominator of the symbolic number:

[n, d] = numden(sym(4/5))

The result is:

n =
4

d =
5

Find the numerator and denominator of the symbolic expression:

syms x y;
[n,d] = numden(x/y + y/x)

The result is:

n =
x^2 + y^2

d =
x*y

The statements

syms a b

6-153

numden

A = [a, 1/b]
[n,d] = numden(A)

return

A =
[a, 1/b]

n =
[a, 1]

d =
[1, b]

6-154

openmn

Purpose Open MuPAD notebook

Syntax h = openmn(file)

Description h = openmn(file) opens the MuPAD notebook file named file, and
returns a handle to the file in h. The command h = mupad(file)
accomplishes the same task.

Examples To open a notebook named e-e-x.mn in the folder \Documents\Notes of
drive H:, enter:

h = openmn('H:\Documents\Notes\e-e-x.mn');

See Also mupad | open | openmu | openmuphlp | openxvc | openxvz

6-155

openmu

Purpose Open MuPAD program file

Syntax h = openmu(file)

Description h = openmu(file) opens the MuPAD program file named file, and
returns a handle to the file in h. The command h = mupad(file)
accomplishes the same task.

Examples To open a program file named yyx.mu in the folder \Documents\Notes
of drive H:, enter:

h = openmu('H:\Documents\Notes\yyx.mu');

See Also mupad | open | openmn | openmuphlp | openxvc | openxvz

6-156

openmuphlp

Purpose Open MuPAD help file

Syntax h = openmuphlp(file)

Description h = openmuphlp(file) opens the MuPAD help file named file, and
returns a handle to the file in h. The command h = mupad(file)
accomplishes the same task.

Input
Arguments

file

A MuPAD help file

Output
Arguments

h

A handle to the file

Examples To open a help file named helpPage.muphlp in the folder
\Documents\Notes of drive H:, enter:

h = openmuphlp('H:\Documents\Notes\helpPage.muphlp');

See Also mupad | open | openmn | openmu | openxvc | openxvz

6-157

openxvc

Purpose Open MuPAD XVC graphics file

Syntax h = openxvc(file)

Description h = openxvc(file) opens the MuPAD XVC graphics file named file,
and returns a handle to the file in h. The command h = mupad(file)
accomplishes the same task.

Input
Arguments

file

A MuPAD XVC graphics file

Output
Arguments

h

A handle to the file

Examples To open a graphics file named image1.xvc in the folder
\Documents\Notes of drive H:, enter:

h = openxvc('H:\Documents\Notes\image1.xvc');

See Also mupad | open | openmn | openmu | openmuphlp | openxvz

6-158

openxvz

Purpose Open MuPAD XVZ graphics file

Syntax h = openxvz(file)

Description h = openxvz(file) opens the MuPAD XVZ graphics file named file,
and returns a handle to the file in h. The command h = mupad(file)
accomplishes the same task.

Input
Arguments

file

A MuPAD XVZ graphics file

Output
Arguments

h

A handle to the file

Examples To open a graphics file named image1.xvz in the folder
\Documents\Notes of drive H:, enter:

h = openxvz('H:\Documents\Notes\image1.xvz');

See Also mupad | open | openmn | openmu | openmuphlp | openxvc

6-159

poly

characteristic polynomial
Purpose Characteristic polynomial of matrix

Syntax p = poly(A)
p = poly(A, v)
poly(sym(A))

Description p = poly(A) returns the coefficients of the characteristic polynomial of
a numeric matrix A. For symbolic A, poly(A) returns the characteristic
polynomial of A in terms of the default variable x. If the elements of A
already contain the variable x, the default variable is t. If the elements
of A contain both x and t, the default variable is still t.

p = poly(A, v) returns the characteristic polynomial of a symbolic or
numeric matrix A in terms of the variable v.

poly(sym(A)) approximately equals poly2sym(poly(A)) for numeric
A. The approximation is due to round-off error.

Examples Compute characteristic polynomials of one of the MATLAB test
matrices:

syms z
A = gallery(3)
p = poly(A)
q = poly(sym(A))
s = poly(A, z)

The results are:

A =
-149 -50 -154
537 180 546
-27 -9 -25

p =
1.0000 -6.0000 11.0000 -6.0000

6-160

poly

q =
x^3 - 6*x^2 + 11*x - 6

s =
z^3 - 6*z^2 + 11*z - 6

Compute the characteristic polynomial of the following symbolic matrix
in terms of the default variable:

syms x y;
B = x*hilb(3)
a = poly(B)

The result is:

B =
[x, x/2, x/3]
[x/2, x/3, x/4]
[x/3, x/4, x/5]

a =
t^3 - (23*t^2*x)/15 + (127*t*x^2)/720 - x^3/2160

Compute the characteristic polynomial of B in terms of the specified
variable y:

b = poly(B, y)

The result is:

b =
- x^3/2160 + (127*x^2*y)/720 - (23*x*y^2)/15 + y^3

See Also eig | jordan | poly2sym | solve

6-161

poly2sym

Purpose Polynomial coefficient vector to symbolic polynomial

Syntax r = poly2sym(c)
r = poly2sym(c, v)

Description r = poly2sym(c) returns a symbolic representation of the polynomial
whose coefficients are in the numeric vector c. The default symbolic
variable is x. The variable v can be specified as a second input
argument. If c = [c1 c2 ... cn], r = poly2sym(c) has the form

c x c x cn n
n1

1
2

2− −+ + +...

poly2sym uses sym’s default (rational) conversion mode to convert the
numeric coefficients to symbolic constants. This mode expresses the
symbolic coefficient approximately as a ratio of integers, if sym can find
a simple ratio that approximates the numeric value, otherwise as an
integer multiplied by a power of 2.

r = poly2sym(c, v) is a polynomial in the symbolic variable v with
coefficients from the vector c. If v has a numeric value and sym
expresses the elements of c exactly, eval(poly2sym(c)) returns the
same value as polyval(c, v).

Examples The command

poly2sym([1 3 2])

returns

ans =
x^2 + 3*x + 2

The command

poly2sym([.694228, .333, 6.2832])

returns

6-162

poly2sym

ans =

(6253049924220329*x^2)/9007199254740992 + (333*x)/1000 + 3927/625

The command

poly2sym([1 0 1 -1 2], y)

returns

ans =
y^4 + y^2 - y + 2

See Also sym | sym2poly | polyval

6-163

pretty

Purpose Prettyprint symbolic expressions

Syntax pretty(X)

Description pretty(X) prints symbolic output of X in a format that resembles
typeset mathematics.

Examples The following statements

A = sym(pascal(2))
B = eig(A)
pretty(B)

return

A =
[1, 1]
[1, 2]

B =
3/2 - 5^(1/2)/2
5^(1/2)/2 + 3/2

+- -+
| 1/2 |
| 5 |
| 3/2 - ---- |
| 2 |
| |
| 1/2 |
| 5 |
| ---- + 3/2 |
| 2 |
+- -+

6-164

quorem

Purpose Symbolic matrix element-wise quotient and remainder

Syntax [Q, R] = quorem(A, B)

Description [Q, R] = quorem(A, B) for symbolic matrices A and B with integer or
polynomial elements does element-wise division of A by B and returns
quotient Q and remainder R so that A = Q.*B+R. For polynomials,
quorem(A,B,x) uses variable x instead of symvar(A,1) or symvar(B,1).

Examples syms x
p = x^3 - 2*x + 5;
[q, r] = quorem(x^5, p)

q =
x^2 + 2

r =
- 5*x^2 + 4*x - 10

[q, r] = quorem(10^5, subs(p,'10'))

q = 101
r = 515

See Also mod

6-165

rank

Purpose Compute rank of symbolic matrix

Syntax rank(A)

Description rank(A) computes the rank of the symbolic matrix A.

Examples Compute the rank of the following numeric matrix:

B = magic(4);
rank(B)

The result is:

ans =
3

Compute the rank of the following symbolic matrix:

syms a b c d
A = [a b;c d];
rank(A)

The result is:

ans =
2

See Also eig | null | rref | size

6-166

real

Purpose Real part of complex symbolic number

Syntax real(Z)

Description real(Z) is the real part of a symbolic Z.

See Also conj | imag

6-167

reset

Purpose Close MuPAD engine

Syntax reset(symengine)

Description reset(symengine) closes the MuPAD engine associated with the
MATLAB workspace, and resets all its assumptions. Immediately
before or after executing reset(symengine) you should clear all
symbolic objects in the MATLAB workspace.

See Also symengine

6-168

round

Purpose Symbolic matrix element-wise round

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. Values
halfway between two integers are rounded away from zero.

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also floor | ceil | fix | frac

6-169

rref

Purpose Compute reduced row echelon form of matrix

Syntax rref(A)

Description rref(A) computes the reduced row echelon form of the symbolic matrix
A. If the elements of a matrix contain free symbolic variables, rref
regards the matrix as nonzero.

Examples Compute the reduced row echelon form of the magic square matrix:

rref(sym(magic(4)))

The result is:

ans =
[1, 0, 0, 1]
[0, 1, 0, 3]
[0, 0, 1, -3]
[0, 0, 0, 0]

Compute the reduced row echelon form of the following symbolic matrix:

syms a b c;
A = [a b c; b c a; a + b, b + c, c + a];
rref(A)

The result is:

ans =
[1, 0, -(- c^2 + a*b)/(- b^2 + a*c)]
[0, 1, -(- a^2 + b*c)/(- b^2 + a*c)]
[0, 0, 0]

See Also eig | jordan | rank | size

6-170

rsums

Purpose Interactive evaluation of Riemann sums

Syntax rsums(f)
rsums(f, a, b)
rsums(f, [a, b])

Description rsums(f) interactively approximates the integral of f(x) by Riemann
sums for x from 0 to 1. rsums(f) displays a graph of f(x) using 10 terms
(rectangles). You can adjust the number of terms taken in the Riemann
sum by using the slider below the graph. The number of terms available
ranges from 2 to 128. f can be a string or a symbolic expression. The
height of each rectangle is determined by the value of the function in
the middle of each interval.

rsums(f, a, b) and rsums(f, [a, b]) approximates the integral
for x from a to b.

Examples Both rsums('exp(-5*x^2)') and rsums exp(-5*x^2) create the
following plot.

6-171

rsums

6-172

setVar

Purpose Assign variable in MuPAD notebook

Syntax setVar(nb, y)
setVar(nb, 'v', y)

Description setVar(nb, y) assigns the symbolic expression y in the MATLAB
workspace to the variable y in the MuPAD notebook nb.

setVar(nb, 'v', y) assigns the symbolic expression y in the MATLAB
workspace to the variable v in the MuPAD notebook nb.

Examples mpnb = mupad;
syms x;
y = exp(-x);
setVar(mpnb,y)
setVar(mpnb,'z',sin(y))

After executing these statements, the MuPAD engine associated with
the mpnb notebook contains the variables y, with value exp(-x), and z,
with value sin(exp(-x)).

See Also getVar | mupad

6-173

simple

Purpose Search for simplest form of symbolic expression

Syntax r = simple(S)
[r, how] = simple(S)

Description r = simple(S) tries several different algebraic simplifications of the
symbolic expression S, displays any that shorten the length of S’s
representation, and returns the shortest. S is a sym. If S is a matrix,
the result represents the shortest representation of the entire matrix,
which is not necessarily the shortest representation of each individual
element. If no return output is given, simple(S) displays all possible
representations and returns the shortest.

[r, how] = simple(S) does not display intermediate simplifications,
but returns the shortest found, as well as a string describing the
particular simplification. r is a sym. how is a string.

Examples Simplify the expressions:

syms x;
f = cos(x)^2 + sin(x)^2;
f = simple(f)
g = cos(3*acos(x));
g = simple(g)

The results are:

f =
1

g =
4*x^3 - 3*x

Simplify the expressions displaying all possible simplifications:

syms x;
f = cos(x) + i*sin(x);
simple(f)

6-174

simple

The result is:

simplify:

cos(x) + sin(x)*i

radsimp:

cos(x) + sin(x)*i

simplify(100):

cos(x) + sin(x)*i

combine(sincos):

cos(x) + sin(x)*i

combine(sinhcosh):

cos(x) + sin(x)*i

combine(ln):

cos(x) + sin(x)*i

factor:

cos(x) + sin(x)*i

expand:

cos(x) + sin(x)*i

combine:

cos(x) + sin(x)*i

rewrite(exp):

exp(x*i)

rewrite(sincos):

cos(x) + sin(x)*i

rewrite(sinhcosh):

cosh(x*i) + sinh(x*i)

6-175

simple

rewrite(tan):

(tan(x/2)*2*i)/(tan(x/2)^2 + 1) - (tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)

mwcos2sin:

sin(x)*i - 2*sin(x/2)^2 + 1

collect(x):

cos(x) + sin(x)*i

ans =

exp(x*i)

Simplify the expression and display the simplification method:

syms x;
f = (x + 1)*x*(x - 1);
[f, how] = simple(f)

f =
x^3 - x

how =
simplify(100)

See Also collect | expand | factor | horner | simplify

6-176

simplify

algebraic simplification
Purpose Algebraic simplification

Syntax R = simplify(S)
R = simplify(S, n)

Description R = simplify(S) performs algebraic simplification of S using MuPAD
simplification rules. If S is a symbolic matrix, this command simplifies
each element of S.

R = simplify(S, n) lets you specify the number of steps in the
algebraic simplification. Here n is a positive integer. By default, n = 100.

Examples Simplify the trigonometric expression:

syms x;
simplify(sin(x)^2 + cos(x)^2)

The result is:

ans =
1

Simplify the expression:

syms a b c;
simplify(exp(c*log(sqrt(a+b))))

The result is:

ans =
(a + b)^(c/2)

Simplify the expressions from the list:

S = [(x^2 + 5*x + 6)/(x + 2), sqrt(16)];
R = simplify(S)

The result is:

6-177

simplify

R =
[x + 3, 4]

See Also collect | expand | factor | horner | simple

6-178

simscapeEquation

Purpose Convert symbolic expressions to Simscape language equations

Syntax simscapeEquation(f)
simscapeEquation(LHS, RHS)

Description simscapeEquation(f) converts the symbolic expression f to a Simscape
language equation. This function call converts any derivative with
respect to the variable t to the Simscape notation X.der. Here X is
the time-dependent variable. In the resulting Simscape equation,
the variable time replaces all instances of the variable t except for
derivatives with respect to t.

simscapeEquation(LHS, RHS) returns a Simscape equation LHS ==
RHS.

Tips The equation section of a Simscape component file supports a limited
number of functions. See the list of Supported Functions for more
information. If a symbolic equation contains the functions that
are not available in the equation section of a Simscape component
file, simscapeEquation cannot correctly convert these equations to
Simscape equations. Such expressions do not trigger an error message.
The following types of expressions are prone to invalid conversion:

• Expressions with infinities

• Expressions returned by evalin and feval.

If you perform symbolic computations in the MuPAD Notebook
Interface and want to convert the results to Simscape equations, use
the generate::Simscape function in MuPAD.

Examples Convert the following expressions to Simscape language equations:

syms t
x = sym('x(t)');
y = sym('y(t)');
phi = diff(x)+5*y + sin(t);

6-179

http://www.mathworks.com/help/toolbox/physmod/simscape/lang/equations.html#brtts6o

simscapeEquation

simscapeEquation(phi)
simscapeEquation(diff(y),phi)

The result is:

ans =
phi == sin(time)+y*5.0+x.der;

ans =
y.der == sin(time)+y*5.0+x.der;

See Also emlBlock | matlabFunction | ccode | fortran

How To • “Generating Simscape Equations” on page 3-144

6-180

single

Purpose Convert symbolic matrix to single precision

Syntax single(S)

Description single(S) converts the symbolic matrix S to a matrix of single-precision
floating-point numbers. S must not contain any symbolic variables,
except 'eps'.

See Also sym | vpa | double

6-181

sinint

Purpose Sine integral

Syntax Y = sinint(X)

Description Y = sinint(X) evaluates the sine integral function at the elements
of X, a numeric matrix, or a symbolic matrix. The result is a numeric
matrix. The sine integral function is defined by

Si x
t

t
dt

x

()
sin= ∫

0

Examples Evaluate sine integral for the elements of the matrix:

sinint([pi 0;-2.2 exp(3)])

ans =
1.8519 0

-1.6876 1.5522

The statement

sinint(1.2)

returns

ans =
1.1080

The statement

syms x;
diff(sinint(x))

returns

ans =
sin(x)/x

6-182

sinint

See Also cosint

6-183

size

Purpose Symbolic matrix dimensions

Syntax d = size(A)
[m, n] = size(A)
d = size(A, n)

Description Suppose A is an m-by-n symbolic or numeric matrix. The statement
d = size(A) returns a numeric vector with two integer components,
d = [m,n].

The multiple assignment statement [m, n] = size(A) returns the two
integers in two separate variables.

The statement d = size(A, n) returns the length of the dimension
specified by the scalar n. For example, size(A,1) is the number of rows
of A and size(A,2) is the number of columns of A.

Examples The statements

syms a b c d
A = [a b c ; a b d; d c b; c b a];
d = size(A)
r = size(A, 2)

return

d =
4 3

r =
3

See Also length | ndims

6-184

solve

Purpose Solve equations and systems

Syntax S = solve(expr)
S = solve(expr, x)
Y = solve(expr1, expr2, ..., exprn)
[y1, y2, ..., yn] = solve(expr1, expr2, ..., exprn)
Y = solve(expr1, expr2, ..., exprn, x1, x2, ..., xn)
[y1, y2, ..., yn] = solve(expr1, expr2, ..., exprn, x1, x2,

..., xn)

Description S = solve(expr) solves the equation expr = 0 for its default variable
determined by symvar and assigns the result to S.

S = solve(expr, x) solves the equation expr = 0 for the variable x
and assigns the result to S.

Y = solve(expr1, expr2, ..., exprn) solves the system of
equations expr1 = 0, expr2 = 0, ..., exprn = 0 for the variables
determined by symvar and assigns the result to Y.

[y1, y2, ..., yn] = solve(expr1, expr2, ..., exprn) solves
the system of equations expr1 = 0, expr2 = 0, ..., exprn = 0
for the variables determined by symvar and assigns the solutions y1,
y2, ..., yn.

Y = solve(expr1, expr2, ..., exprn, x1, x2, ..., xn) solves
the system of equations expr1 = 0, expr2 = 0, ..., exprn = 0 for
the variables x1, x2, ..., xn and assigns the result to Y.

[y1, y2, ..., yn] = solve(expr1, expr2, ..., exprn, x1, x2,
..., xn) solves the system of equations expr1 = 0, expr2 = 0,
..., exprn = 0 for the variables x1, x2, ..., xn and assigns the
solutions to y1, y2, ..., yn.

Tips • If the symbolic solver cannot find a solution of an equation or
a system of equations, the toolbox internally calls the numeric
solver that tries to find a numeric approximation. For polynomial
equations and systems, the numeric solver returns all solutions.

6-185

solve

For non-polynomial equations and systems that have solutions, the
solver returns only one solution.

• If the solution of an equation or a system of equations contains
parameters, the solver can choose one or more values of the
parameters and return the results corresponding to these values.
For some equations and systems, the solver returns parametrized
solutions without choosing particular values. In this case, the solver
also issues a warning indicating the values of parameters in the
returned solutions.

• To solve differential equations, use the dsolve function.

• When solving a system of equations, always assign the result to
output arguments. Output arguments allow you to access the values
of the solutions of a system.

Input
Arguments

expr

A symbolic expression or a string. If a symbolic expression or
a string represents a symbolic expression (does not contain the
equal sign), the solver solves an equation expr = 0. If a string
represents an equation (contains the equal sign), the solver solves
that equation.

expr1, expr2, ..., exprn

Symbolic expressions or strings that represent the system of
symbolic equations.

x

A variable for which you solve an equation. If you do not specify
the variable, the solver uses the default variable determined by
symvar.

x1, x2, ..., xn

Variables for which you solve a system of equations. If you do
not specify the variables, the solver uses the default variables
determined by symvar.

6-186

solve

Output
Arguments

S

A symbolic array that contains solutions of an equation. The size
of a symbolic array corresponds to the number of the solutions.

Y

A structure array that contains solutions of a system. The number
of fields in the structure array corresponds to the number of
independent variables in a system.

y1, y2, ..., yn

Variables to which the solver assigns the solutions of a system of
equations. The number of output variables or symbolic arrays
must be equal to the number of independent variables in a system.
The toolbox sorts independent variables alphabetically, and then
assigns the solutions for these variables to the output variables
or symbolic arrays.

Examples If the right side of an equation is zero, specify the left side as a symbolic
expression or a string:

syms x;
solve(x^2 - 1)
solve('x^2 + 4*x + 1')

ans =
1

-1

ans =
3^(1/2) - 2

- 3^(1/2) - 2

If the right side of an equation is not zero, specify the equation as a
string:

syms x;
solve('x^4 + 1 = 2*x^2 - 1')

6-187

solve

The solver returns the symbolic array of solutions:

ans =
(1 + i)^(1/2)
(1 - i)^(1/2)

-(1 + i)^(1/2)
-(1 - i)^(1/2)

To avoid ambiguities when solving equations with symbolic parameters,
specify the variable for which you want to solve an equation:

syms a b c x;
solve(a*x^2 + b*x + c, a)
solve('a*x^2 + b*x + c', 'b')

The result is:

ans =
-(c + b*x)/x^2

ans =
-(a*x^2 + c)/x

If you do not specify the variable for which you want to solve the
equation, the toolbox chooses a variable by using the symvar function.
In this example, the solver chooses the variable x:

syms a b c x;
solve(a*x^2 + b*x + c)

ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

When solving a system of equations, use one output argument to return
the solutions in the form of a structure array:

6-188

solve

syms x y;
S = solve('x + y = 1','x - 11*y = 5')

S =
x: [1x1 sym]
y: [1x1 sym]

To display the solutions, access the elements of the structure array S:

S = [S.x S.y]

S =
[4/3, -1/3]

When solving a system of equations, use multiple output arguments to
assign the solutions directly to output variables:

syms a u v;
[solutions_a, solutions_u, solutions_v] =...
solve('a*u^2 + v^2', 'u - v = 1', 'a^2 - 5*a + 6')

The solver returns a symbolic array of solutions for each independent
variable:

solutions_a =
3
2
2
3

solutions_u =
(3^(1/2)*i)/4 + 1/4
(2^(1/2)*i)/3 + 1/3
1/3 - (2^(1/2)*i)/3
1/4 - (3^(1/2)*i)/4

6-189

solve

solutions_v =
(3^(1/2)*i)/4 - 3/4
(2^(1/2)*i)/3 - 2/3

- (2^(1/2)*i)/3 - 2/3
- (3^(1/2)*i)/4 - 3/4

Entries with the same index form the solutions of a system:

solutions = [solutions_a, solutions_u, solutions_v]

solutions =
[3, (3^(1/2)*i)/4 + 1/4, (3^(1/2)*i)/4 - 3/4]
[2, (2^(1/2)*i)/3 + 1/3, (2^(1/2)*i)/3 - 2/3]
[2, 1/3 - (2^(1/2)*i)/3, - (2^(1/2)*i)/3 - 2/3]
[3, 1/4 - (3^(1/2)*i)/4, - (3^(1/2)*i)/4 - 3/4]

Solve the following equation:

syms x;
solve('sin(x) = x^2 - 1')

The symbolic solver cannot find an exact symbolic solution for this
equation, and therefore, it calls the numeric solver. Since the equation
is not polynomial, an attempt to find all possible solutions can take a lot
of time. The numeric solver does not try to find all numeric solutions for
this equation. Instead, it returns only the first solution that it finds:

ans =
-0.63673265080528201088799090383828

Plotting the left and the right sides of the equation in one graph shows
that the equation also has a positive solution:

ezplot(sin(x), -2, 2);
hold on;
ezplot(x^2 - 1, -2, 2)
hold off

6-190

solve

You can find this solution by calling the MuPAD numeric solver directly
and specifying the interval where this solution can be found. To call
MuPAD commands from the MATLAB Command Window, use the
evalin or feval function:

evalin(symengine, 'numeric::solve(sin(x) = x^2
- 1, x = 0..2)')

ans =
1.4096240040025962492355939705895

6-191

solve

Solve the following trigonometric equations:

syms x;
solve(sin(1/x), x)
solve(sin(x), x)

For the first equation, the solver returns the solution with one
parameter and issues a warning indicating the values of the parameter.
For the second equation, the solver chooses one value of the parameter
and returns the solution corresponding to this value:

Warning: The solutions are parametrized by the symbols:
k = Z_

ans =
1/(pi*k)

ans =
0

References

See Also dsolve | symvar

How To • “Solving Equations” on page 3-81

6-192

sort

Purpose Sort symbolic vectors, matrices, or polynomials

Syntax Y = sort(X)
Y = sort(X, dim)
Y = sort(X, mode)
[Y, I] = sort(X)

Description Y = sort(X) sorts the elements of a symbolic vector or matrix in
ascending order. If X is a vector, sort(X) sorts the elements of X in
numerical or lexicographic order. If X is a matrix, sort(X) sorts each
column of X.

Y = sort(X, dim) sorts the elements of a symbolic vector or
matrix along the dimension of X specified by the integer dim. For
two-dimensional matrices, use 1 to sort element of each column and 2 to
sort element of each row.

Y = sort(X, mode) sorts the elements of a symbolic vector or matrix in
the specified direction, depending on the value of mode. Use ascend to
sort in ascending order, and descend to sort in descending order.

[Y, I] = sort(X) sorts a symbolic vector or a matrix X. This call also
returns the array I that shows the indices that each element of a new
vector or matrix Y had in the original vector or matrix X. If X is an
m-by-n matrix, then each column of I is a permutation vector of the
corresponding column of X, such that

for j = 1:n
Y(:,j) = X(I(:,j),j);

end

If X is a two-dimensional matrix and you sort the elements of each
column, the array I shows the row indices that the elements of Y had
in the original matrix X. If you sort the elements of each row, I shows
the original column indices.

Examples Sort the elements of the following symbolic vector in ascending and
descending order:

6-193

sort

syms a b c d e;
sort([7 e 1 c 5 d a b])
sort([7 e 1 c 5 d a b], 'descend')

The results are:

ans =
[1, 5, 7, a, b, c, d, e]

ans =
[e, d, c, b, a, 7, 5, 1]

Sort the elements of the following symbolic matrix:

X = sym(magic(3))

X =
[8, 1, 6]
[3, 5, 7]
[4, 9, 2]

By default, the sort command sorts elements of each column:

sort(X)

ans =
[3, 1, 2]
[4, 5, 6]
[8, 9, 7]

To sort the elements of each row, use set the value of the dim option to 2:

sort(X, 2)

ans =
[1, 6, 8]
[3, 5, 7]
[2, 4, 9]

6-194

sort

Sort the elements of each row of X in descending order:

sort(X, 2, 'descend')

ans =
[8, 6, 1]
[7, 5, 3]
[9, 4, 2]

Sort the matrix X returning the array with indices that each element
of the resulting matrix had in X:

[Y, I] = sort(X)

Y =
[3, 1, 2]
[4, 5, 6]
[8, 9, 7]

I =
2 1 3
3 2 1
1 3 2

See Also sym2poly | coeffs

6-195

subexpr

Purpose Rewrite symbolic expression in terms of common subexpressions

Syntax [Y, SIGMA] = subexpr(X, SIGMA)
[Y, SIGMA] = subexpr(X, 'SIGMA')

Description [Y, SIGMA] = subexpr(X, SIGMA) or [Y, SIGMA] = subexpr(X,
'SIGMA') rewrites the symbolic expression X in terms of its common
subexpressions.

Examples The statements

h = solve('a*x^3+b*x^2+c*x+d = 0');
[r,s] = subexpr(h,'s')

return the rewritten expression for t in r in terms of a common
subexpression, which is returned in s:

r =

s^(1/3) - b/(3*a) - (- b^2/(9*a^2) + c/(3*a))/s^(1/3)

(- b^2/(9*a^2) + c/(3*a))/(2*s^(1/3)) - s^(1/3)/2 +...

(3^(1/2)*(s^(1/3) + (- b^2/(9*a^2) + c/(3*a))/s^(1/3))*i)/2 - b/(3*a)

(- b^2/(9*a^2) + c/(3*a))/(2*s^(1/3)) - s^(1/3)/2 -...

(3^(1/2)*(s^(1/3) + (- b^2/(9*a^2) + c/(3*a))/s^(1/3))*i)/2 - b/(3*a)

s =

((d/(2*a) + b^3/(27*a^3) - (b*c)/(6*a^2))^2 +...

(- b^2/(9*a^2) + c/(3*a))^3)^(1/2) - b^3/(27*a^3) -...

d/(2*a) + (b*c)/(6*a^2)

See Also pretty | simple | subs

6-196

subs

Purpose Symbolic substitution in symbolic expression or matrix

Syntax R = subs(S)
R = subs(S, new)
R = subs(S, old, new)

Description R = subs(S) replaces all occurrences of variables in the symbolic
expression S with values obtained from the calling function, or the
MATLAB workspace.

R = subs(S, new) replaces the default symbolic variable in S with new.

R = subs(S, old, new) replaces old with new in the symbolic
expression S. old is a symbolic variable or a string representing a
variable name. new is a symbolic or numeric variable or expression.
That is, R = subs(S,old,new) evaluates S at old = new. The
substitution is first attempted as a MATLAB expression resulting in
the computation being done in double-precision arithmetic if all the
values in new are double precision. Convert the new values to sym to
ensure symbolic or variable-precision arithmetic.

If old and new are vectors or cell arrays of the same size and type,
each element of old is replaced by the corresponding element of new.
If S and old are scalars and new is an array or cell array, the scalars
are expanded to produce an array result. If new is a cell array of
numeric matrices, the substitutions are performed element-wise (i.e.,
subs(x*y,{x,y},{A,B}) returns A.*B when A and B are numeric).

If subs(s,old,new) does not change s, subs(s,new,old) is tried. This
provides backwards compatibility with previous versions and eliminates
the need to remember the order of the arguments. subs(s,old,new,0)
does not switch the arguments if s does not change.

6-197

subs

Tip If A is a matrix, the command subs(S, x, A) replaces all
occurrences of the variable x in the symbolic expression S with the
matrix A, and replaces the constant term in S with the constant times a
matrix of all ones. To evaluate S in the matrix sense, use the command
polyvalm(sym2poly(S), A), which replaces the constant term with the
constant times an identity matrix.

Examples Single Input

Suppose a = 980 and C2 = 3 exist in the workspace.

The statement

y = dsolve('Dy = -a*y')

produces

y =
C2/exp(a*t)

Then the statements

a = 980; C2 = 3; subs(y)

produce

ans =
3/exp(980*t)

Single Substitution

syms a b;
subs(a + b, a, 4)

returns

ans =
b + 4

6-198

subs

Multiple Substitutions

syms a b;
subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})

returns

ans =
sin(2) + cos(alpha)

Scalar Expansion Case

syms t;
subs(exp(a*t), 'a', -magic(2))

returns

ans =
[1/exp(t), 1/exp(3*t)]
[1/exp(4*t), 1/exp(2*t)]

Multiple Scalar Expansion

syms x y;
subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})

returns

ans =
0 -1
2 0

See Also simplify | subexpr

6-199

svd

Purpose Compute singular value decomposition of symbolic matrix

Syntax sigma = svd(A)
sigma = svd(vpa(A))
[U, S, V] = svd(A)
[U, S, V] = svd(vpa(A))

Description sigma = svd(A) returns a symbolic vector containing the singular
values of a symbolic matrix A. With symbolic inputs, svd does not accept
complex values as inputs.

sigma = svd(vpa(A)) returns a vector with the numeric singular
values using variable-precision arithmetic.

[U, S, V] = svd(A) and [U, S, V] = svd(vpa(A)) return numeric
unitary matrices U and V with the columns containing the singular
vectors and a diagonal matrix S containing the singular values. The
matrices satisfy A = U*S*V'. The svd command does not compute
symbolic singular vectors. With multiple outputs, svd does not accept
complex values as inputs.

Examples Compute the symbolic and numeric singular values and the numeric
singular vectors of the following magic square:

digits(5)
A = sym(magic(4));
svd(A)
svd(vpa(A))
[U, S, V] = svd(A)

The results are:

ans =
0

2*5^(1/2)
8*5^(1/2)

34

6-200

svd

ans =
34.0

17.889
4.4721

2.8024*10^(-7)

U =
[0.5, 0.67082, 0.5, 0.22361]
[0.5, -0.22361, -0.5, 0.67082]
[0.5, 0.22361, -0.5, -0.67082]
[0.5, -0.67082, 0.5, -0.22361]

S =
[34.0, 0, 0, 0]
[0, 17.889, 0, 0]
[0, 0, 4.4721, 0]
[0, 0, 0, 0]

V =
[0.5, 0.5, 0.67082, 0.22361]
[0.5, -0.5, -0.22361, 0.67082]
[0.5, -0.5, 0.22361, -0.67082]
[0.5, 0.5, -0.67082, -0.22361]

See Also digits | eig | inv | vpa

6-201

sym

Purpose Define symbolic objects

Syntax S = sym(A)
x = sym('x')
x = sym('x', 'real')
k = sym('x', 'positive')
x = sym('x', 'clear')
A = sym('A', [m n])
A = sym('A', n)
A = sym(A, 'real')
A = sym(A, 'positive')
A = sym(A, 'clear')
S = sym(A, flag)

Description S = sym(A) constructs an object S, of the sym class, from A. If the input
argument is a string, the result is a symbolic number or variable. If the
input argument is a numeric scalar or matrix, the result is a symbolic
representation of the given numeric values.

x = sym('x') creates the symbolic variable with name x and stores
the result in x.

x = sym('x', 'real') creates the symbolic variable x and assumes
that x is real, so that conj(x) is equal to x. alpha = sym('alpha') and
r = sym('Rho','real') are other examples.

Similarly, k = sym('x', 'positive') creates the symbolic variable x
and assumes that x is real and positive.

x = sym('x', 'clear') clears all previously set assumptions on the
variable x. Ensures that x is neither real nor positive. See also the
reference pages on syms. For compatibility with previous versions
of the software, x = sym('x','unreal') has the same effect as x =
sym('x','clear').

Statements like pi = sym('pi') and delta = sym('1/10') create
symbolic numbers that avoid the floating-point approximations inherent
in the values of pi and 1/10. The pi created in this way temporarily
replaces the built-in numeric function with the same name.

6-202

sym

A = sym('A', [m n]) creates a m-by-n matrix of symbolic variables.
The dimensions m and n of a matrix must be integers. You can use this
syntax to create a 1-by-n or an n-by-1 vector. The sym function does not
allow you to use symbolic variables without assigned numeric values as
dimensions. By default, the generated names of elements of a vector
use the form Ak, and the generated names of elements of a matrix use
the form Ai_j. The base, A, must be a valid variable name. (To verify
whether the name is a valid variable name, use isvarname.) The values
of k, i, and j range from 1 to m or 1 to n. To specify other form for
generated names of matrix elements, use '%d' in the first input. For
example, A = sym('A%d%d', [3 3]) generates the 3-by-3 symbolic
matrix A with the elements A11, A12, ..., A33.

A = sym('A', n) creates an n-by-n matrix.

A = sym(A, 'real') sets an assumption that all elements of a symbolic
matrix (or a symbolic vector) A are real. To create a symbolic vector or a
symbolic matrix A, use A = sym('A', [m n]) or A = sym('A', n).

A = sym(A, 'positive') sets an assumption that all elements of a
symbolic matrix (or a symbolic vector) A are real and positive. To create
a symbolic vector or a symbolic matrix A, use A = sym('A', [m n]) or
A = sym('A', n).

A = sym(A, 'clear') clears assumptions previously set on the
symbolic matrix (or the symbolic vector) A.

S = sym(A, flag) where flag is one of 'r', 'd', 'e', or 'f', converts a
numeric scalar or matrix to symbolic form. The technique for converting
floating-point numbers is specified by the optional second argument,
which can be 'f', 'r', 'e' or 'd'. The default is 'r'.

'f' stands for “floating-point.” All values are represented in the form
N*2^e or -N*2^e , where N and e are integers, N 0. For example,
sym(1/10,'f') is 3602879701896397/36028797018963968 .

'r' stands for “rational.” Floating-point numbers obtained by
evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q
for modest sized integers p and q are converted to the corresponding
symbolic form. This effectively compensates for the round-off error

6-203

sym

involved in the original evaluation, but may not represent the
floating-point value precisely. If no simple rational approximation can
be found, an expression of the form p*2^q with large integers p and q
reproduces the floating-point value exactly. For example, sym(4/3,'r')
is '4/3', but sym(1+sqrt(5),'r') is 7286977268806824*2^(-51).

'e' stands for “estimate error.” The 'r' form is supplemented by a term
involving the variable 'eps', which estimates the difference between
the theoretical rational expression and its actual floating-point value.
For example, sym(3*pi/4,'e') is 3*pi/4*(1+3143276*eps/65).

'd' stands for “decimal.” The number of digits is taken from the
current setting of digits used by vpa. Fewer than 16 digits loses
some accuracy, while more than 16 digits may not be warranted. For
example, with digits(10), sym(4/3,'d') is 1.333333333, while with
digits digits(20), sym(4/3,'d') is 1.3333333333333332593, which
does not end in a string of 3s, but is an accurate decimal representation
of the floating-point number nearest to 4/3.

Examples Create the 3-by-4 symbolic matrix A with the auto-generated elements
A1_1, ..., A3_4 :

A = sym('A', [3 4])

A =
[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]
[A3_1, A3_2, A3_3, A3_4]

Now, create the 4-by-4 matrix B with the elements x_1_1, ..., x_4_4:

B = sym('x_%d_%d', [4 4])

B =
[x_1_1, x_1_2, x_1_3, x_1_4]
[x_2_1, x_2_2, x_2_3, x_2_4]
[x_3_1, x_3_2, x_3_3, x_3_4]
[x_4_1, x_4_2, x_4_3, x_4_4]

6-204

sym

This syntax does not define elements of a symbolic matrix as separate
symbolic objects. To access an element of a matrix, use parentheses:

A(2, 3)
B (4, 2)

ans =
A2_3

ans =
x_4_2

You can use symbolic matrices and vectors generated by the sym
function to define other matrices:

A = diag(sym('A',[1 4]))

A =
[A1, 0, 0, 0]
[0, A2, 0, 0]
[0, 0, A3, 0]
[0, 0, 0, A4]

Perform operations on symbolic matrices by using the operators that
you use for numeric matrices. For example, find the determinant and
the trace of the matrix A:

det(A)

ans =
A1*A2*A3*A4

trace(A)

ans =
A1 + A2 + A3 + A4

Also, use the sym function to set assumptions on all elements of a
symbolic matrix. You cannot create a symbolic matrix and set an

6-205

sym

assumption on all its elements in one sym function call. Use two
separate sym function calls: the first call creates a matrix, and the
second call specifies an assumption:

A = sym('A%d%d', [2 2]);
A = sym(A, 'positive')

A =
[A11, A12]
[A21, A22]

Now, MATLAB assumes that all elements of A are positive:

solve(A(1, 1)^2 - 1, A(1, 1))

ans =
1

To clear all previously set assumptions on elements of a symbolic
matrix, also use the sym function:

A = sym(A, 'clear');
solve(A(1, 1)^2 - 1, A(1, 1))

ans =
1

-1

The sym function lets you choose the conversion technique by specifying
the optional second argument, which can be ’r’, ’f’, ’d’ or ’e’. The default
is ’r’. For example, convert the number 1/3 to a symbolic object:

r = sym(1/3)
f = sym(1/3, 'f')
d = sym(1/3, 'd')
e = sym(1/3, 'e')

r =
1/3

6-206

sym

f =
6004799503160661/18014398509481984

d =
0.3333333333333333148296162562473909929395

e =
1/3 - eps/12

See Also digits | double | findsym | reset | syms | symvar | eps

6-207

symengine

Purpose Return symbolic engine

Syntax s = symengine

Description s = symengine returns the currently active symbolic engine.

Examples To see which symbolic computation engine is currently active, enter:

s = symengine

The result is:

s =
MuPAD symbolic engine

Now you can use the variable s in function calls that require symbolic
engine:

syms a b c x
p = a*x^2 + b*x + c;
feval(s,'polylib::discrim', p, x)

The result is:

ans =
b^2 - 4*a*c

See Also feval

6-208

syms

Purpose Shortcut for constructing symbolic objects

Syntax syms arg1 arg2 ...
syms arg1 arg2 ... real
syms arg1 arg2 ... clear
syms arg1 arg2 ... positive

Description syms arg1 arg2 ... is a shortcut for

arg1 = sym('arg1');
arg2 = sym('arg2'); ...

syms arg1 arg2 ... real is a shortcut for

arg1 = sym('arg1','real');
arg2 = sym('arg2','real'); ...

syms arg1 arg2 ... clear is a shortcut for

arg1 = sym('arg1','clear');
arg2 = sym('arg2','clear'); ...

syms arg1 arg2 ... positive is a shortcut for

arg1 = sym('arg1','positive');
arg2 = sym('arg2','positive'); ...

Each input argument must begin with a letter and can contain only
alphanumeric characters. For compatibility with previous versions
of the software, syms arg1 arg2 ... unreal has exactly the same
effect as syms arg1 arg2 ... clear.

In functions and scripts, do not use the syms command to create
symbolic variables with the same names as MATLAB functions. For
these names MATLAB does not create symbolic variables, but keeps
the names assigned to the functions. If you want to create a symbolic
variable with the same name as some MATLAB function inside a
function or a script, use the sym command. For example:

6-209

syms

alpha = sym('alpha')

Examples syms x y real is equivalent to

x = sym('x','real');
y = sym('y','real');

To clear the symbolic objects x and y of 'real' status, type

syms x y clear

Note that clear x will not clear the symbolic object of its 'real' status.
You can achieve this using

• syms x clear to remove the 'real' status from x without affecting
any other symbolic variables.

• reset(symengine) to reset the MuPAD engine.

• clear all to clear all objects in the MATLAB workspace and resets
the MuPAD engine.

See Also findsym | reset | sym | symvar

How To • “Clearing Assumptions and Resetting the Symbolic Engine” on page
4-51

6-210

sym2poly

Purpose Symbolic-to-numeric polynomial conversion

Syntax c = sym2poly(s)

Description c = sym2poly(s) returns a row vector containing the numeric
coefficients of a symbolic polynomial. The coefficients are ordered in
descending powers of the polynomial’s independent variable. In other
words, the vector’s first entry contains the coefficient of the polynomial’s
highest term; the second entry, the coefficient of the second highest
term; and so on.

Examples The command

syms x u v
sym2poly(x^3 - 2*x - 5)

returns

ans =
1 0 -2 -5

The command

sym2poly(u^4 - 3 + 5*u^2)

returns

ans =
1 0 5 0 -3

and the command

sym2poly(sin(pi/6)*v + exp(1)*v^2)

returns

ans =
2.7183 0.5000 0

6-211

sym2poly

See Also poly2sym | subs | sym | polyval

6-212

symsum

Purpose Evaluate symbolic sum of series

Syntax r = symsum(expr)
r = symsum(expr, v)
r = symsum(expr, a, b)
r = symsum(expr, v, a, b)

Description r = symsum(expr) evaluates the sum of the symbolic expression expr
with respect to the default symbolic variable defaultVar determined by
symvar. The value of the default variable changes from 0 to defaultVar
- 1.

r = symsum(expr, v) evaluates the sum of the symbolic expression
expr with respect to the symbolic variable v. The value of the variable v
changes from 0 to v - 1.

r = symsum(expr, a, b) evaluates the sum of the symbolic expression
expr with respect to the default symbolic variable defaultVar
determined by symvar. The value of the default variable changes from a
to b.

r = symsum(expr, v, a, b) evaluates the sum of the symbolic
expression expr with respect to the symbolic variable v. The value of
the default variable changes from a to b.

Examples Evaluate the sum of the following symbolic expressions k and k^2:

syms k
symsum(k)
symsum(k^2)

The results are

ans =
k^2/2 - k/2

ans =
k^3/3 - k^2/2 + k/6

6-213

symsum

Evaluate the sum of the following expression specifying the limits:

symsum(k^2, 0, 10)

The result is

ans =
385

Evaluate the sum of the following multivariable expression with respect
to k:

syms x;
symsum(x^k/sym('k!'), k, 0, inf)

The result is

ans =
exp(x)

See Also int | syms | symvar

How To • “Symbolic Summation” on page 3-18

6-214

symvar

Purpose Find symbolic variables in symbolic expression or matrix

Syntax symvar(s)
symvar(s,n)

Description symvar(s) returns a vector containing all the symbolic variables in s.
The variables are returned in the alphabetical order with uppercase
letters preceding lowercase letters. If there are no symbolic variables in
s, then symvar returns the empty vector. symvar does not consider the
constants pi, i, and j to be variables.

symvar(s,n) returns a vector containing the n symbolic variables in s
that are alphabetically closest to 'x':

1 The variables are sorted by the first letter in their names. The
ordering is x y w z v u ... a X Y W Z V U ... A. The name of a symbolic
variable cannot begin with a number.

2 For all subsequent letters, the ordering is alphabetical,
with all uppercase letters having precedence over lowercase:
0 1 ... 9 A B ... Z a b ...z.

Note symvar(s) can return variables in different order than
symvar(s,n).

Examples syms wa wb wx yx ya yb
f = wa + wb + wx + ya + yb + yx;
symvar(f)

The result is:

ans =
[wa, wb, wx, ya, yb, yx]

syms x y z a b
w = x^2/(sin(3*y - b));

6-215

symvar

symvar(w)

The result is:

ans =
[b, x, y]

symvar(w, 3)

The result is:

ans =
[x, y, b]

symvar(s,1) returns the variable closest to x. When performing
differentiation, integration, substitution or solving equations, MATLAB
uses this variable as a default variable.

syms v z
g = v + z;
symvar(g, 1)

The result is:

ans =
z

syms aaa aab
g = aaa + aab;
symvar(g, 1)

The result is:

ans =
aaa

syms X1 x2 xa xb
g = X1 + x2 + xa + xb;
symvar(g, 1)

6-216

symvar

The result is:

ans =
x2

See Also findsym | sym | syms

6-217

taylor

Taylor series expansion
Purpose Taylor series expansion

Syntax taylor(f)
taylor(f, n)
taylor(f, a)
taylor(f, n, v)
taylor(f, n, v, a)

Description taylor(f) computes the Taylor series expansion of f up to the fifth
order. The expansion point is 0 (Maclaurin series expansion).

taylor(f, n) computes the Taylor series expansion of f up to the
(n-1)-order, where n is a positive integer. The expansion point is 0
(Maclaurin series expansion).

taylor(f, a) computes the Taylor series expansion of f up to the fifth
order around the expansion point a. Here a is a real number. If a is
a positive integer or if you want to change the truncation order, use
taylor(f,n,a) to specify the base point and the truncation order.

taylor(f, n, v) computes the Taylor series expansion of f up to
the (n-1)-order with respect to v. Here f is a symbolic expression
representing a function, and v specifies the independent variable in the
expression. v can be a string or symbolic variable. The expansion point
is 0 (Maclaurin series expansion).

taylor(f, n, v, a) computes the Taylor series expansion of f around
the expansion point a. The argument a can be a numeric value, a
symbol, or a string representing a numeric value or an unknown. If a is
a symbol or a string, do not omit v.

If a is neither an integer nor a symbol or a string, you can supply the
arguments n, v, and a in any order. taylor determines the purpose of
the arguments from their position and type.

You also can omit any of the arguments n, v, and a. If you do not specify
v, taylor usessymvar to determine the function’s independent variable.
n defaults to 6, and a defaults to 0.

6-218

taylor

The following expression represent the Taylor series for an analytic
function f(x) about the base point x=a:

f x x a
f a

m
m

m

m
()

()
!

()
= −() ⋅

=

∞

∑
0

Examples This table describes various uses of the taylor command and its
relation to Maclaurin and Taylor series expansions. Before using the
taylor command, define the function you want to expand. For example:

syms x
f = exp(x^2);

Mathematical Operation MATLAB Operation

x
f

m
m

m

m

=
∑ ⋅

0

5 0() ()
!

taylor(f)

x
f

m
m

m

n m

=

−

∑ ⋅
0

1 0() ()
!

n is a positive integer

taylor(f,n)

n is a positive integer.

()
()
!

()
x a

f a
m

m

m

m
− ⋅

=
∑

0

5

a is a real number

taylor(f,a)

a is a real number.

()
()
!

()
x a

f a
m

m

m

n m
− ⋅

=

−

∑
0

1

n is a positive integer and a is real.
Also, a can be a positive integer.

taylor(f,n,a)

a is real and n is a positive
integer.

6-219

taylor

In the case where f is a function of two or more variables
(f=f(x,y,...)), there is an additional parameter that allows you to
select the variable for the Taylor expansion. Look at this table for
illustrations of this feature.

Mathematical Operation MATLAB Operation

y
m y

f x y
m

m

n

m
y

!
(,)

= =
∑ ⋅ ∂

∂0

5

0

taylor(f,y)

y
m y

f x y
m

m

n m

m
y

!
(,)

=

−

=
∑ ⋅ ∂

∂0

1

0

n is a positive integer

taylor(f,y,n) or
taylor(f,n,y)

n is a positive integer.

()
!

(,)
y a

m y
f x y

m

m

m

m
y a

− ⋅ ∂
∂= =

∑
0

5

a is real

taylor(f,y,a)

a is real.

()
!

(,)
y a

m y
f x y

m

m

n m

m
y a

− ⋅ ∂
∂=

−

=
∑

0

1

a is real and n is a positive integer

taylor(f,n,y,a)

a is real and n is a positive
integer.

See Also symvar | taylortool

6-220

taylortool

Purpose Taylor series calculator

Syntax taylortool
taylortool('f')

Description taylortool initiates a GUI that graphs a function against the Nth
partial sum of its Taylor series about a base point x = a. The default
function, value of N, base point, and interval of computation for
taylortool are f = x*cos(x), N = 7, a = 0, and [-2*pi,2*pi],
respectively.

taylortool('f') initiates the GUI for the given expression f.

Examples taylortool('sin(tan(x)) - tan(sin(x))')

6-221

taylortool

See Also funtool | rsums

6-222

trace

Purpose Enable and disable tracing of MuPAD commands

Syntax trace(symengine, 'on')
trace(symengine, 'off')

Description trace(symengine, 'on') enables tracing of all subsequent MuPAD
commands. Tracing means that for each command Symbolic Math
Toolbox shows all internal calls to MuPAD functions and the results of
these calls.

trace(symengine, 'off') disables MuPAD commands tracing.

See Also evalin | feval

6-223

tril

Purpose Return lower triangular part of symbolic matrix

Syntax tril(A)
tril(A, k)

Description tril(A) returns a triangular matrix that retains the lower part of the
matrix A. The upper triangle of the resulting matrix is padded with
zeros.

tril(A, k) returns a matrix that retains the elements of A on and
below the k-th diagonal. The elements above the k-th diagonal equal
to zero. The values k = 0, k > 0, and k < 0 correspond to the main,
superdiagonals, and subdiagonals, respectively.

Examples Display the matrix retaining only the lower triangle of the original
symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A)

The result is:

ans =
[a, 0, 0]
[1, 2, 0]
[a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and below the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, 1)

The result is:

6-224

tril

ans =
[a, b, 0]
[1, 2, 3]
[a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and below the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, -1)

The result is:

ans =
[0, 0, 0]
[1, 0, 0]
[a + 1, b + 2, 0]

See Also diag | triu

6-225

triu

Purpose Return upper triangular part of symbolic matrix

Syntax triu(A)
triu(A, k)

Description triu(A) returns a triangular matrix that retains the upper part of the
matrix A. The lower triangle of the resulting matrix is padded with
zeros.

triu(A, k) returns a matrix that retains the elements of A on and
above the k-th diagonal. The elements below the k-th diagonal equal
to zero. The values k = 0, k > 0, and k < 0 correspond to the main,
superdiagonals, and subdiagonals, respectively.

Examples Display the matrix retaining only the upper triangle of the original
symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A)

The result is:

ans =
[a, b, c]
[0, 2, 3]
[0, 0, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and above the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, 1)

The result is:

6-226

triu

ans =
[0, b, c]
[0, 0, 3]
[0, 0, 0]

Display the matrix that retains the elements of the original symbolic
matrix on and above the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, -1)

The result is:

ans =
[a, b, c]
[1, 2, 3]
[0, b + 2, c + 3]

See Also diag | tril

6-227

uint8

Purpose Convert symbolic matrix to unsigned integers

Syntax uint8(S)
uint16(S)
uint32(S)
uint64(S)

Description uint8(S) converts a symbolic matrix S to a matrix of unsigned 8-bit
integers.

uint16(S) converts S to a matrix of unsigned 16-bit integers.

uint32(S) converts S to a matrix of unsigned 32-bit integers.

uint64(S) converts S to a matrix of unsigned 64-bit integers.

Note The output of uint8, uint16, uint32, and uint64 does not have
type symbolic.

The following table summarizes the output of these four functions.

Function Output Range Output Type
Bytes per
Element

Output
Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65,535 Unsigned 16-bit
integer

2 uint16

uint32 0 to 4,294,967,295 Unsigned 32-bit
integer

4 uint32

uint64 0 to 18,446,744,073,709,
551,615

Unsigned 64-bit
integer

8 uint64

See Also sym | vpa | single | double | int8 | int16 | int32 | int64

6-228

vpa

Purpose Variable-precision arithmetic

Syntax R = vpa(A)
R = vpa(A, d)

Description R = vpa(A) uses variable-precision arithmetic (VPA) to compute each
element of A to at least d decimal digits of accuracy, where d is the
current setting of digits.

R = vpa(A, d) uses at least d significant (nonzero) digits, instead of
the current setting of digits.

Tips • The toolbox increases the internal precision of calculations by several
digits (guard digits).

Input
Arguments

A

A symbolic object

d

An integer greater than 1 and smaller than 2 129 +

Output
Arguments

R

A symbolic object representing a floating-point number

Examples Approximate the following expressions with the 25 digits precision:

old = digits(25);
q = vpa('1/2')
p = vpa(pi)
w = vpa('(1+sqrt(5))/2')
digits(old)

q =
0.5

p =

6-229

vpa

3.141592653589793238462643

w =
1.618033988749894848204587

Solve the following equation:

y = solve('x^2 - 2')

y =
2^(1/2)

-2^(1/2)

Approximate the solutions with floating-point numbers:

vpa(y(1))
vpa(y(2))

ans =
1.4142135623730950488016887242097

ans =
-1.4142135623730950488016887242097

Use the vpa function to approximate elements of the following matrices:

A = vpa(hilb(2), 25)
B = vpa(hilb(2), 5)

A =
[1.0, 0.5]
[0.5, 0.3333333333333333333333333]

B =
[1.0, 0.5]
[0.5, 0.33333]

6-230

vpa

The vpa function lets you specify the number of significant (nonzero)
digits that is different from the current digits setting. For example,
compute the ratio 1/3 and the ratio 1/3000 with 4 significant digits:

vpa(1/3, 4)
vpa(1/3000, 4)

ans =
0.3333

ans =
0.0003333

The number of digits that you specify by the vpa function or the digits
function is the minimal number of digits. Internally, the toolbox can use
more digits than you specify. These additional digits are called guard
digits. For example, set the number of digits to 4, and then display the
floating-point approximation of 1/3 using 4 digits:

old = digits;
digits(4);
a = vpa(1/3, 4)

a =
0.3333

Now, display a using 20 digits. The result shows that the toolbox
internally used more than 4 digits when computing a. The last digits in
the following result are incorrect because of the round-off error:

vpa(a, 20)
digits(old);

ans =
0.33333333333303016843

6-231

vpa

Hidden round-off errors can cause unexpected results. For example,
compute the number 1/10 with the default 32 digits accuracy and with
the 10 digits accuracy:

a = vpa(1/10, 32)
b = vpa(1/10, 10)

a =
0.1

b =
0.1

Now, compute the difference a - b. The result is not zero:

a - b

ans =
0.000000000000000000086736173798840354720600815844403

The difference is not equal to zero because the toolbox approximates the
number b=0.1 with 32 digits. This approximation produces round-off
errors because the floating point number 0.1 is different from the
rational number 1/10. When you compute the difference a - b, the
toolbox actually computes the difference as follows:

a - vpa(b, 32)

ans =
0.000000000000000000086736173798840354720600815844403

Suppose, you convert a number to a symbolic object, and then perform
VPA operations on that object. The results can depend on the
conversion technique that you used to convert a floating-point number
to a symbolic object. The sym function lets you choose the conversion
technique by specifying the optional second argument, which can be

6-232

vpa

’r’, ’f’, ’d’ or ’e’. The default is ’r’. For example, convert the constant
π=3.141592653589793... to a symbolic object:

r = sym(pi)
f = sym(pi, 'f')
d = sym(pi, 'd')
e = sym(pi, 'e')

r =
pi

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359

Compute these numbers with the 4 digits VPA precision. Three of the
four numeric approximations give the same result:

vpa(r, 4)
vpa(f, 4)
vpa(d, 4)
vpa(e, 4)

ans =
3.142

ans =
3.142

ans =
3.142

ans =

6-233

vpa

3.142 - 0.5515*eps

Now, increase the VPA precision to 40 digits. The numeric
approximation of 1/10 depends on the technique that you used to
convert 1/10 to the symbolic object:

vpa(r, 40)
vpa(f, 40)
vpa(d, 40)
vpa(e, 40)

ans =
3.141592653589793238462643383279502884197

ans =
3.141592653589793115997963468544185161591

ans =
3.1415926535897931159979634685442

ans =
3.141592653589793238462643383279502884197 -...
0.5515320334261838440111420612813370473538*eps

See Also digits | double

How To • “Variable-Precision Arithmetic” on page 3-48

6-234

zeta

Purpose Compute Riemann zeta function

Syntax Y = zeta(X)
Y = zeta(n, X)

Description Y = zeta(X) evaluates the zeta function at the elements of X, a numeric
matrix, or a symbolic matrix. The zeta function is defined by

 ()w
kw

k

=
=

∞

∑ 1

1

Y = zeta(n, X) returns the n-th derivative of zeta(X).

Examples Compute the Riemann zeta function for the number:

zeta(1.5)

The result is:

ans =
2.6124

Compute the Riemann zeta function for the matrix:

zeta(1.2:0.1:2.1)

The result is:

ans =
Columns 1 through 6

5.5916 3.9319 3.1055 2.6124 2.2858 2.0543

Columns 7 through 10

1.8822 1.7497 1.6449 1.5602

6-235

zeta

Compute the Riemann zeta function for the matrix of the symbolic
expressions:

syms x y;
zeta([x 2; 4 x + y])

The result is:

ans =
[zeta(x), pi^2/6]
[pi^4/90, zeta(x + y)]

Differentiate the Riemann zeta function:

diff(zeta(x), x, 3)

The result is:

ans =
zeta(3, x)

6-236

ztrans

z-transform
Purpose z-transform

Syntax F = ztrans(f)
F = ztrans(f, w)
F = ztrans(f, k, w)

Description F = ztrans(f) computes the z-transform of the symbolic expression
f. This syntax assumes that f is a function of the variable n, and the
returned value F as a function of z.

If f = f(z), then ztrans(f) returns a function of w.

F = F(w)

f f n F F z= ⇒ =() ()

By definition, the z-transform is

F z
f n

zn
n

()
()







0

F = ztrans(f, w) computes the z-transform F as a function of w
instead of the default variable z.

F w
f n

wn
n

()
()







0

F = ztrans(f, k, w) computes the z-transform and lets you specify
that f is a function of k and L is a function of w.

F w
f k

wk
k

()
()







0

6-237

ztrans

Examples
Z-Transform MATLAB Operation

f(n) = n4

Z f f n z n

n
[] = −

=

∞

∑ ()
0

= + + +
−

z z z z

z

()

()

3 2

5
11 11 1

1

syms n;
f = n^4;
ztrans(f)

ans =
(z^4 + 11*z^3 + 11*z^2
+ z)/(z - 1)^5

g(z) = az

Z g g z w z

z
[] = −

=

∞

∑ ()
0

=
−
w

w a

syms a z;
g = a^z;
ztrans(g)

ans =
-w/(a - w)

f(n) = sin(an)

Z f f n w n

n
[] = −

=

∞

∑ ()
0

=
− +

w a

w a w

sin

cos1 2 2

syms a n w;
f = sin(a*n);
ztrans(f, w)

ans =
(w*sin(a))/(w^2 -
2*cos(a)*w + 1)

See Also fourier | iztrans | laplace

6-238

Index

IndexSymbols and Numerics
' 6-3
.' 6-3
* 6-2
+ 6-2
- 6-2
. 6-3
/ 6-3
^ 6-3
.* 6-2
./ 6-3
.^ 6-3
\\ 3-57 6-2

A
Airy differential equation 3-87
Airy function 3-87
algebraic equations

solving 6-185
arithmetic operations 6-2

left division
array 6-3
matrix 6-2

matrix addition 6-2
matrix subtraction 6-2
multiplication

array 6-2
matrix 6-2

power
array 6-3
matrix 6-3

right division
array 6-3
matrix 6-3

transpose
array 6-3
matrix 6-3

assigning variables to MuPAD notebooks 6-173

B
backslash operator 3-57
beam equation 3-93
Bernoulli numbers 3-108 6-139
Bernoulli polynomials 3-108 6-139
Bessel functions 3-108 6-139

differentiating 3-5
integrating 3-15

besselj 3-5
besselk 3-88
beta function 3-108 6-139
binomial coefficients 3-108 6-139

C
calculations

propagating 4-16
calculus 3-2

example 3-21
ccode 6-5
ceil 6-7
characteristic polynomial

poly function 6-160
relation to eigenvalues 3-60
Rosser matrix 3-63

Chebyshev polynomial 3-113 6-144
circuit analysis

using the Laplace transform for 3-99
circulant matrix

eigenvalues 3-43
symbolic 2-9

clear all 6-10
clearing assumptions

symbolic engine 2-32
clearing variables

symbolic engine 2-32
coeffs 6-11
collect 3-31 6-13
colspace 6-14
column space 3-58

Index-1

Index

complementary error function 3-108 6-139
complex conjugate 6-17
complex number

imaginary part of 6-111
real part of 6-167

complex symbolic variables 2-2
compose 6-15
conj 2-31 6-17
converting numeric matrices to symbolic

form 2-10
cosine integral function 6-18
cosine integrals 3-108 6-139
cosint 6-18

D
Dawson’s integral 3-108 6-139
decimal symbolic expressions 2-18
default symbolic variable 2-25
definite integration 3-14
det 6-20
diag 6-21
diff 3-2 6-24
difference equations

solving 3-105
differentiation 3-2
diffraction 3-114
digamma function 3-108 6-139
digits 2-19 6-26
dirac 6-31
Dirac Delta function 3-93
discrim 3-77
doc 6-32
double 6-33

converting to floating-point with 3-51
dsolve 6-34

examples 3-85

E
eig 3-60 6-40
eigenvalue trajectories 3-70
eigenvalues 6-40

computing 3-60
sensitive 3-71

eigenvector 3-61
elliptic integrals 3-108 6-139
emlBlock 6-43
environment 1-3
eps 2-18
error function 3-108 6-139
Euler polynomials 3-108 6-139
evalin 6-49
expand 6-52

examples 3-32
expm 6-51
exponential integrals 3-108 6-139
ezcontour 6-54

F
factor 6-80

example 3-33
finverse 6-85
fix 6-86
floating-point arithmetic 3-48

IEEE 3-49
floating-point symbolic expressions 2-17
floor 6-87
format 3-49
fortran 6-88
fourier 6-90
Fourier transform 3-91 6-90
frac 6-93
Fresnel integral 3-108 6-139
function calculator 6-94
functional composition 6-15
functional inverse 6-85
funtool 6-94

Index-2

Index

G
Gamma function 3-108 6-139
Gegenbauer polynomial 3-113 6-144
generalized hypergeometric function 3-109 6-139
getting variables from MuPAD notebooks 6-101
getVar 6-101
Givens transformation 3-64

with basic operations 3-54
golden ratio 2-7

H
handle

MuPAD 4-11
harmonic function 3-109 6-139
heaviside 6-102
Heaviside function 3-96
Help

MuPAD 6-32
Hermite polynomial 3-113 6-144
Hilbert matrix

converting to symbolic 2-10
with basic operations 3-56

horner 6-103
example 3-33

hyperbolic cosine integral 3-109 6-139
hyperbolic sine integral 3-109 6-139

I
IEEE floating-point arithmetic 3-49
ifourier 6-106
ilaplace 6-108
imag 6-111
incomplete Gamma function 3-108 6-139
int 3-11 6-112

example 3-11
int16 6-115
int32 6-115
int64 6-115

int8 6-115
integral transforms 3-91

Fourier 3-91
Laplace 3-98
z-transform 3-104

integration 3-11
definite 3-14
with real constants 3-15

interface 1-3
inv 6-116
inverse Fourier transform 6-106
inverse Laplace transform 6-108
inverse z-transform 6-118
iztrans 6-118

J
Jacobi polynomial 3-113 6-144
jacobian 3-7 6-120
Jacobian matrix 3-7 6-120
jordan 6-121

example 3-66
Jordan canonical form 3-65 6-121

L
Laguerre polynomial 3-113 6-144
Lambert W function 3-109 6-123 6-139
lambertw 6-123
laplace 6-125
Laplace transform 3-98 6-125
latex 6-127
left division

array 6-3
matrix 6-2

Legendre polynomial 3-113 6-144
limit 6-129
limits 3-8

undefined 3-10
linear algebra 3-54

Index-3

Index

log Gamma function 3-108 6-139
log10 6-131
log2 6-132
logarithmic integral 3-109 6-139

M
machine epsilon 2-18
Maclaurin series 3-19
matlabFunction 6-133
matrix

addition 6-2
condition number 3-57
diagonal 6-21
exponential 6-51
inverse 6-116
left division 6-2
lower triangular 6-224
multiplication 6-2
power 6-3
rank 6-166
right division 6-3
size 6-184
subtraction 6-2
transpose 6-3
upper triangular 6-226

mfun 3-108 6-138
mfunlist 6-139
mod 6-146
multiplication

array 6-2
matrix 6-2

MuPAD help 6-32
MuPAD software

accessing 6-149
mupadwelcome 6-149

opening from Start menu 4-14

N
null 6-151
null space 3-58
null space basis 6-151
numden 6-153
numeric matrix

converting to symbolic form 2-10
numeric symbolic expressions 2-17

O
ordinary differential equations

solving 6-34
orthogonal polynomials 3-113 6-144

P
poly 3-60 6-160
poly2sym 6-162
polygamma function 3-109 6-139
polynomial discriminants 3-77
power

array 6-3
matrix 6-3

pretty 6-164
example 3-19

propagating calculations 4-16

Q
quorem 6-165

R
rank 6-166
rational arithmetic 3-49
rational symbolic expressions 2-18
real 6-167
real property 2-2
real symbolic variables 2-2
recover lost handle 4-11

Index-4

Index

reduced row echelon form 6-170
reset 6-168
Riemann sums

evaluating 6-171
Riemann Zeta function 6-235
right division

array 6-3
matrix 6-3

Rosser matrix 3-62
round 6-169
rref 6-170
rsums 6-171

S
setVar 6-173
shifted sine integral 3-109 6-139
simple 3-37 6-174
simplifications 3-30
simplify 3-35 6-177
simultaneous differential equations

solving 3-88 3-100
simultaneous linear equations

solving systems of 3-57 3-84
sine integral 3-109 6-139
sine integral function 6-182
sine integrals 3-108 6-139
single 6-181
singular value decomposition 3-67 6-200
sinint 6-182
solve 3-81 6-185
solving equations 3-81

algebraic 3-81 6-185
difference 3-105
ordinary differential 3-85 6-34

sort 6-193
special functions 3-108

evaluating numerically 6-138
listing 6-139

spherical coordinates 3-6

start MuPAD interfaces 6-149
subexpr 3-41 6-196
subexpressions 3-41
subs 3-43 6-197
substitutions 3-41

in symbolic expressions 6-197
summation

symbolic 3-18
svd 3-67 6-200
sym 2-6 2-10 6-202
sym2poly 6-211
symbolic expressions 3-81

C code representation of 6-5
creating 2-6
decimal 2-18
differentiating 6-24
expanding 6-52
factoring 6-80
floating-point 2-17
Fortran representation of 6-88
integrating 6-112
LaTeX representation of 6-127
limit of 6-129
numeric 2-17
prettyprinting 6-164
rational 2-18
simplifying 6-174 6-177 6-196
substituting in 6-197
summation of 6-213
Taylor series expansion of 6-218

symbolic matrix
computing eigenvalue of 3-63
creating 2-9
differentiating 3-6

symbolic objects
about 2-2
creating 6-202 6-209

symbolic polynomials
converting to numeric form 6-211
creating from coefficient vector 6-162

Index-5

Index

Horner representation of 6-103
symbolic summation 3-18 to 3-19
symbolic variables

clearing 6-210
complex 2-2
creating 2-6
real 2-2

symengine 6-208
syms 2-6 6-209
symsize 6-184
symsum 3-19 6-213
symvar 6-215

T
taylor 3-19 6-218
Taylor series 3-19
Taylor series expansion 6-218
taylortool 6-221
transpose

array 6-3
matrix 6-3

tril 6-224
triu 6-226

U
uint16 6-228
uint32 6-228
uint64 6-228
uint8 6-228

V
variable-precision arithmetic 3-48 6-229

setting accuracy of 6-26
variable-precision numbers 3-51
vpa 3-51 6-229

Z
z-transform 3-104 6-237
zeta 6-235
ztrans 6-237

Index-6

	toc
	Introduction
	Product Overview
	Accessing Symbolic Math Toolbox Functionality
	Key Features
	Working from MATLAB
	Working from MuPAD

	Getting Started
	Symbolic Objects
	Overview of Symbolic Objects
	Symbolic Variables
	Symbolic Numbers

	Creating Symbolic Variables and Expressions
	Creating Symbolic Variables
	Creating Symbolic Expressions
	Creating Symbolic Objects with Identical Names
	Creating a Matrix of Symbolic Variables
	Using Existing Symbolic Objects as Elements
	Generating Elements While Creating a Matrix

	Creating a Matrix of Symbolic Numbers
	Finding Symbolic Variables in Expressions and Matrices

	Performing Symbolic Computations
	Simplifying Symbolic Expressions
	Substituting in Symbolic Expressions
	Substituting Symbolic Variables with Numbers
	Substituting in Multivariate Expressions
	Substituting One Symbolic Variable for Another
	Substituting a Matrix into a Polynomial
	Substituting the Elements of a Symbolic Matrix

	Estimating the Precision of Numeric to Symbolic Conversions
	Converting to Floating-Point Symbolic Form
	Converting to Rational Symbolic Form
	Converting to Rational Symbolic Form with Machine Precision
	Converting to Decimal Symbolic Form

	Differentiating Symbolic Expressions
	Expressions with One Variable
	Partial Derivatives
	Second Partial and Mixed Derivatives

	Integrating Symbolic Expressions
	Indefinite Integrals of One-Variable Expressions
	Indefinite Integrals of Multivariable Expressions
	Definite Integrals
	If MATLAB Cannot Find a Closed Form of an Integral

	Solving Equations
	Algebraic Equations with One Symbolic Variable
	Algebraic Equations with Several Symbolic Variables
	Systems of Algebraic Equations

	Finding a Default Symbolic Variable
	Creating Plots of Symbolic Functions
	Explicit Function Plot
	Implicit Function Plot
	3-D Plot
	Surface Plot

	Assumptions for Symbolic Objects
	Default Assumption
	Setting Assumptions for Symbolic Variables
	Deleting Symbolic Objects and Their Assumptions

	Using Symbolic Math Toolbox Software
	Calculus
	Differentiation
	Derivatives of Expressions with Several Variables
	More Examples

	Limits
	One-Sided Limits

	Integration
	Integration with Real Parameters
	Integration with Complex Parameters

	Symbolic Summation
	Taylor Series
	Calculus Example
	Defining the Function
	Finding the Asymptotes
	Finding the Maximum and Minimum
	Finding the Inflection Point

	Simplifications and Substitutions
	Simplifications
	collect
	expand
	horner
	factor
	simplify
	simple

	Substitutions
	subexpr
	subs

	Variable-Precision Arithmetic
	Overview
	Example: Using the Different Kinds of Arithmetic
	Rational Arithmetic
	Variable-Precision Numbers
	Converting to Floating-Point

	Another Example Using Different Kinds of Arithmetic

	Linear Algebra
	Basic Algebraic Operations
	Linear Algebraic Operations
	Eigenvalues
	Jordan Canonical Form
	Singular Value Decomposition
	Eigenvalue Trajectories

	Solving Equations
	Solving Algebraic Equations
	Several Algebraic Equations
	Single Differential Equation
	Example 1
	Example 2
	Example 3
	Example 4
	Further ODE Examples

	Several Differential Equations

	Integral Transforms and Z-Transforms
	Fourier and Inverse Fourier Transforms
	Laplace and Inverse Laplace Transforms
	Z-Transforms and Inverse Z-Transforms
	References

	Special Functions of Applied Mathematics
	Numerical Evaluation of Special Functions Using mfun
	Syntax and Definitions of mfun Special Functions
	Diffraction Example

	Using Graphics
	Creating Plots
	Using Symbolic Plotting Functions
	Using MATLAB Plotting Functions
	Plotting Multiple Symbolic Functions in One Graph
	Plotting Multiple Symbolic Functions in One Figure
	Combining Symbolic Function Plots and Numeric Data Plots

	Exploring Function Plots
	Editing Graphs
	Saving Graphs

	Generating Code from Symbolic Expressions
	Generating C or Fortran Code
	Generating MATLAB Functions
	Generating a Function Handle
	Controlling the Order of Variables
	Generating a File
	Naming Output Variables
	Converting MuPAD Expressions

	Generating MATLAB Function Blocks
	Generating and Editing a Block
	Controlling the Order of Input Ports
	Naming the Output Ports
	Converting MuPAD Expressions

	Generating Simscape Equations
	Converting Algebraic and Differential Equations
	Converting MuPAD Equations
	Limitations

	MuPAD in Symbolic Math Toolbox
	Understanding MuPAD
	Introduction to MuPAD
	MuPAD Engines and MATLAB Workspace
	Introductory Example Using a MuPAD Notebook from MATLAB

	MuPAD for MATLAB Users
	Getting Help for MuPAD
	Creating, Opening, and Saving MuPAD Notebooks
	Calculating in a MuPAD Notebook
	Visual Elements of a Notebook
	Working in a Notebook
	Cascading Calculations
	Synchronizing a Notebook and its Engine

	Other MuPAD Interfaces: Editor and Debugger
	Notebook Files and Program Files
	Source Code of the MuPAD Library Functions

	Integration of MuPAD and MATLAB
	Differences Between MATLAB and MuPAD Syntax
	Copying Variables and Expressions Between the MATLAB Workspace a
	Copying and Pasting Using the System Clipboard

	Reserved Variable and Function Names
	Conflicts Caused by MuPAD Function Names
	Conflicts Caused by Syntax Conversions

	Opening MuPAD Interfaces from MATLAB
	Calling Built-In MuPAD Functions from the MATLAB Command Window
	evalin
	feval
	Using evalin vs. feval
	Floating-Point Arguments of evalin and feval

	Computing in the MATLAB Command Window vs. the MuPAD Notebook In
	Results Displayed in Typeset Math
	Graphics and Animations
	More Functionality in Specialized Mathematical Areas
	More Options for Common Symbolic Functions
	Possibility to Expand Existing Functionality

	Using Your Own MuPAD Procedures
	Writing MuPAD Procedures
	Before Calling a Procedure
	Calling Your Own MuPAD Procedures

	Clearing Assumptions and Resetting the Symbolic Engine
	Checking a Variable’s Assumptions
	Examples of the Effect of Assumptions

	Integrating Symbolic Computations in Other Toolboxes and Simulin
	Creating MATLAB Functions from MuPAD Expressions
	Copying MuPAD Variables to the MATLAB Workspace
	Generating MATLAB Code in a MuPAD Notebook

	Creating MATLAB Function Blocks from MuPAD Expressions
	Creating Simscape Equations from MuPAD Expressions
	Generating Simscape Equations in the MuPAD Notebook Interface
	Generating Simscape Equations in the MATLAB Command Window

	Function Reference
	Calculus
	Linear Algebra
	Simplification
	Solution of Equations
	Variable-Precision Arithmetic
	Arithmetic Operations
	Special Functions
	MuPAD
	Pedagogical and Graphical Applications
	Conversions
	Basic Operations
	Integral and Z-Transforms

	Functions — Alphabetical List
	Index

	tables
	mfun Special Functions
	Orthogonal Polynomials
	Common Tasks in MATLAB and MuPAD Syntax
	MATLAB vs. MuPAD Expressions
	mfun Special Functions
	Orthogonal Polynomials

